JavaScript is required

Quả cầu bán kính R = 3cm, lăn đều, không trượt trên hai thanh ray song song cách nhau một khoảng d = 4cm. Sau 2s, tâm quả cầu tịnh tiến được 120cm. Tính vận tốc tức thời của điểm N trên quả cầu (hình 3.11).

A.

0,6 m/s

B.

0,15 m/s

C.

0,75 m/s

D.

1,35 m/s

Trả lời:

Đáp án đúng: B


The sphere rolls without slipping on two rails, so the point of contact on the sphere has zero velocity. Let v be the translational velocity of the center of the sphere. We have v = s/t = 120 cm / 2 s = 60 cm/s = 0.6 m/s. Let \u03c9 be the angular velocity. Since the sphere rolls without slipping, v = \u03c9r, where r is the radius of the circle that the contact point of the sphere traces on the rail. Thus, r = d/2 = 4 cm / 2 = 2 cm = 0.02 m. Therefore, \u03c9 = v/r = 0.6 m/s / 0.02 m = 30 rad/s. The velocity of point N is not simply \u03c9R because N is not the point of contact. Point N is at the top of the sphere, so its velocity is the sum of the translational velocity of the center of mass and the tangential velocity due to rotation. Thus, v_N = v + \u03c9R = 0.6 + 30 * 0.03 = 0.6 + 0.9 = 1.5 m/s. However, the question may be asking for the magnitude of the velocity. In this case, since the translational velocity is horizontal, vx = 0.6 m/s. The tangential velocity is vertically upward, vy = \u03c9R = 0.9 m/s. Then, the magnitude of the velocity is sqrt(vx^2 + vy^2) = sqrt(0.6^2 + 0.9^2) = sqrt(0.36 + 0.81) = sqrt(1.17) \u2248 1.08 m/s. It is possible that none of the answers are correct due to an error in the provided options or in the problem setup.

Câu hỏi liên quan