Gọi \({z_1}\,,\,{z_2}\) là hai nghiệm của phương trình \({z^2} - 2z + 2 = 0\). Tính giá trị của \(P = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right|\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\)\(\begin{array}{l}{z^2} - 2z + 2 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 1 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 1 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} = - 1\\ \Rightarrow {\left( {z - 1} \right)^2} = {i^2}\\ \Leftrightarrow \left[ \begin{array}{l}z - 1 = i\\z - 1 = - i\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{z_1} = 1 + i\\{z_2} = 1 - i\end{array} \right.\end{array}\)
Có \(\begin{array}{l}P = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}}} \right| = \left| {\dfrac{1}{{1 + i}} + \dfrac{1}{{1 - i}}} \right|\\\,\,\,\,\, = \left| {\dfrac{{1 - i + 1 + i}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}} \right| = \left| {\dfrac{1}{{1 - {i^2}}}} \right| = 1\end{array}\)