Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa % aaleaacaaIXaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaaikdaaeqa % aaaa!3A7B! {z_1},{z_2}\) là các nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaG4m % aiabg2da9iaaicdaaaa!3DED! {z^2} - 2z + 3 = 0\). Modul của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa % aaleaacaaIXaaabaGaaG4maaaakiaac6cacaWG6bWaa0baaSqaaiaa % ikdaaeaacaaI0aaaaaaa!3BFA! z_1^3.z_2^4\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaG4m % aiabg2da9iaaicdacqGHuhY2daWabaabaeqabaGaamOEamaaBaaale % aacaaIXaaabeaakiabg2da9iaaigdacqGHRaWkdaGcaaqaaiaaikda % aSqabaGccaWGPbGaeyO0H49aaqWaaeaacaWG6bWaaSbaaSqaaiaaig % daaeqaaaGccaGLhWUaayjcSdGaeyypa0ZaaOaaaeaacaaIXaGaey4k % aSIaaGOmaaWcbeaakiabg2da9maakaaabaGaaG4maaWcbeaaaOqaai % aadQhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIXaGaeyOeI0Ya % aOaaaeaacaaIYaaaleqaaOGaamyAaiabgkDiEpaaemaabaGaamOEam % aaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aiabg2da9maakaaa % baGaaGymaiabgUcaRiaaikdaaSqabaGccqGH9aqpdaGcaaqaaiaaio % daaSqabaaaaOGaay5waaaaaa!67D2! {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l} {z_1} = 1 + \sqrt 2 i \Rightarrow \left| {{z_1}} \right| = \sqrt {1 + 2} = \sqrt 3 \\ {z_2} = 1 - \sqrt 2 i \Rightarrow \left| {{z_2}} \right| = \sqrt {1 + 2} = \sqrt 3 \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaq % WaaeaacaWG6bWaa0baaSqaaiaaigdaaeaacaaIZaaaaOGaaiOlaiaa % dQhadaqhaaWcbaGaaGOmaaqaaiaaisdaaaaakiaawEa7caGLiWoacq % GH9aqpdaabdaqaaiaadQhadaWgaaWcbaGaaGymaaqabaaakiaawEa7 % caGLiWoadaahaaWcbeqaaiaaiodaaaGccaGGUaWaaqWaaeaacaWG6b % WaaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaa % caaI0aaaaOGaeyypa0ZaaeWaaeaadaGcaaqaaiaaiodaaSqabaaaki % aawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccaGGUaWaaeWaaeaa % daGcaaqaaiaaiodaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqaai % aaisdaaaGccqGH9aqpdaqadaqaamaakaaabaGaaG4maaWcbeaaaOGa % ayjkaiaawMcaamaaCaaaleqabaGaaG4naaaakiabg2da9iaaikdaca % aI3aWaaOaaaeaacaaIZaaaleqaaaaa!5F83! \Rightarrow \left| {z_1^3.z_2^4} \right| = {\left| {{z_1}} \right|^3}.{\left| {{z_2}} \right|^4} = {\left( {\sqrt 3 } \right)^3}.{\left( {\sqrt 3 } \right)^4} = {\left( {\sqrt 3 } \right)^7} = 27\sqrt 3 \)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 4