Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) sao cho phương trình \({{9}^{x}}-m{{.3}^{x+1}}+3{{m}^{2}}-75=0\) có hai nghiệm phân biệt. Hỏi \(S\) có bao nhiêu phần tử?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có phương trình đã cho \(\Leftrightarrow {{\left( {{3}^{x}} \right)}^{2}}-3m{{.3}^{x}}+3{{m}^{2}}-75=0\ \ \ \left( * \right)\)
Đặt \({{3}^{x}}=t\ \ \left( t>0 \right)\) ta có phương trình: \({{t}^{2}}-3mt+3{{m}^{2}}-75=0\ \ \ \left( 1 \right)\)
Để phương trình \(\left( * \right)\) có hai nghiệm phân biệt thì phương trình \(\left( 1 \right)\) có hai nghiệm dương phân biệt
\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
\Delta > 0\\
- \frac{b}{a} > 0\\
\frac{c}{a} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
9{m^2} - 12{m^2} + 300 > 0\\
3m > 0\\
3{m^2} - 75 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3{m^2} < 300\\
m > 0\\
{m^2} > 25
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{m^2} < 100\\
m > 0\\
\left[ \begin{array}{l}
m > 5\\
m < - 5
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- 10 < m < 10\\
m > 5
\end{array} \right. \Leftrightarrow 5 < m < 10 \Rightarrow m = \left\{ {6;\;7;\;8;\;9} \right\}.
\end{array}\)
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Cao Bá Quát