Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTH1. Nếu \(y=\sqrt{2}\notin \mathbb{Z}\)
TH2. Nếu \(y>\sqrt{2} \Rightarrow \left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)\Leftrightarrow {{2}^{\sqrt{2}}}<x<{{2}^{y}}\).
Tập nghiệm của BPT chứa tối đa 1000 số nguyên \(\left\{ 3;4;...;1002 \right\}\Leftrightarrow {{2}^{y}}\le 1003\Leftrightarrow y\le {{\log }_{2}}1003\approx 9,97\Rightarrow y\in \left\{ 2;...;9 \right\}\)
TH3. Nếu \(y<\sqrt{2}\Rightarrow y=1\Rightarrow \left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\Leftrightarrow 1<{{\log }_{2}}x<\sqrt{2}\Leftrightarrow 2<x<{{2}^{\sqrt{2}}}\). Tập nghiệm không chứa số nguyên nào
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Đình Chiểu lần 2