ADMICRO
Cho phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) = 1\). Khi đặt \(t = {\log _5}\left( {{5^x} - 1} \right)\), ta được phương trình nào dưới đây?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) = 1\) (1)
TXĐ: \(D = \left( {\,0\,; + \infty } \right)\).
Ta có \({\log _{25}}\left( {{5^{x + 1}} - 5} \right) = {\log _{{5^2}}}\left( {{{5.5}^x} - 5} \right) = \frac{1}{2}\left( {{{\log }_5}\left( {{5^x} - 1} \right) + 1} \right)\).
Đặt \(t = {\log _5}\left( {{5^x} - 1} \right)\) \(\left( {t > 0} \right)\).
Phương trình (1) trở thành \(t.\frac{1}{2}\left( {t + 1} \right) = 1 \Leftrightarrow {t^2} + t - 2 = 0\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
40 câu trắc nghiệm chuyên đề Hàm số mũ - Logarit có lời giải ôn thi THPTQG năm 2019
02/12/2024
0 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK