Cho mạch điện xoay chiều RLC mắc nối tiếp, cuộn dây thuần cảm, R là một biến trở, \(C=\frac{{{10}^{-4}}}{\sqrt{2}\pi }F;L=\frac{\sqrt{2}}{2\pi }H,\)điện áp giữa hai đầu mạch điện có phương trình \(u=100\sqrt{2}\cos 100\pi t\)(V), thay đổi giá trị của R thì thấy có hai giá trị đều cho cùng một giá trị của công suất, một trong hai giá trị là 200Ω. Xác định giá trị thứ hai của R.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTheo bài ra ta có:
\({{P}_{1}}={{P}_{2}}\Leftrightarrow \frac{{{U}^{2}}{{R}_{1}}}{R_{1}^{2}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}=\frac{{{U}^{2}}{{R}_{2}}}{R_{2}^{2}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}\) \(\Leftrightarrow {{R}_{1}}.\left( R_{2}^{2}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}} \right)={{R}_{2}}.\left( R_{1}^{2}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}} \right)\)
\(\Leftrightarrow {{R}_{1}}R_{2}^{2}+{{R}_{1}}{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}={{R}_{2}}R_{1}^{2}+{{R}_{2}}{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\Leftrightarrow {{R}_{1}}{{R}_{2}}={{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}\) (*)
Lại có:
\(\left\{ \begin{align} & {{Z}_{L}}=100\pi .\frac{\sqrt{2}}{2\pi }=50\sqrt{2}\Omega \\ & {{Z}_{C}}=\frac{1}{100\pi .\frac{{{10}^{-4}}}{\sqrt{2}\pi }}=100\sqrt{2}\Omega \\ & R=200\Omega \\ \end{align} \right.\)
Thay vào (*) ta được:
\(200\cdot {{R}_{2}}={{(50\sqrt{2}-100\sqrt{2})}^{2}}\Rightarrow {{R}_{2}}=25\Omega \)
Đề thi thử THPT QG năm 2021 môn Vật Lý
Trường THPT Chuyên Nguyễn Trãi - Hải Dương