Cho m, n là các số nguyên dương khác 1. Gọi P là tích các nghiệm của phương trình \(2018\left( {{{\log }_m}x} \right)\left( {{{\log }_n}x} \right) = 2017{\log _m}x + 2018{\log _n}x + 2019.\) P nguyên và đạt giá trị nhỏ nhất khi:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: x > 0.
Với điều kiện đó phương trình đã cho được biến đỏi tương đương thành phương trình:
\(2018\left( {{{\log }_m}x} \right)\left( {{{\log }_n}m.{{\log }_m}x} \right) - 2017{\log _m}x - 2018{\log _n}m.{\log _m}x - 2019 = 0(1).\)
Đặt \(t = {\log _m}x,t \in R.\) Khi đó phương trình (1) trở thành phương trình:
\(2018\left( {{{\log }_n}m} \right){t^2} - \left( {2017 + 2018{{\log }_n}m} \right)t - 2019 = 0\) (2).
Do phương trình (2) có \(2{\log _n}m.\left( { - 2019} \right) < 0\) nên phương trình (2) có hai nghiệm trái dấu, do đó phương trình (1) luôn có hai nghiệm dương phân biệt x1, x2.
Xét \({\log _m}{x_1}{x_2} = {\log _m}{x_1} + {\log _m}{x_2} = \frac{{2017 + 2018{{\log }_n}m}}{{2018{{\log }_n}m}} = \frac{{2017}}{{2018{{\log }_n}m}} + 1.\)
Suy ra: \({x_1}{x_2} = {m^{\frac{{2017}}{{2018{{\log }_n}m}} + 1.}} = {m^{\frac{{2017}}{{2018}}{{\log }_n}n + 1}} = m.{n^{\frac{{2017}}{{2018}}}}.\)
Theo bài m là số nguyên dương khác 1 nên \(m \ge 2,\) do đó \(P = {x_1}{x_2} \ge 2\sqrt[{2018}]{{{n^{2017}}}}.\)
Mặt khác n là số nguyên dương khác 1 nên \(n \ge 2\) và 2017, 2018 là hai số nguyên tốc cùng nhau nên để P nguyên và có giá trị nhỏ nhất khi \(n = {2^{2018}}.\) Lúc đó \(m.n = {2.2^{2018}} = {2^{2019}}.\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Quang Trung - Bình Phước lần 2