Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác ABC cân tại A có AB = AC = 2a; \(BC = 2a\sqrt 3 \). Tam giác A'BC vuông cân tại A' và nằm trong mặt phẳng vuông góc với đáy (ABC). Khoảng cách giữa hai đường thẳng AA' và BC bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+ Gọi H là trung điểm cạnh BC, suy ra \(A'H \bot BC\).
Ta có \(\left\{ \begin{array}{l} \left( {A'BC} \right) \bot \left( {ABC} \right)\\ \left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\ A'H \subset \left( {A'BC} \right)\\ A'H \bot BC \end{array} \right. \Rightarrow A'H \bot \left( {ABC} \right)\).
+ Gọi K là hình chiếu vuông góc của điểm H trên cạnh AA'.
Do \(\left\{ \begin{array}{l} BC \bot A'H\\ BC \bot AH \end{array} \right. \Rightarrow BC \bot \left( {AHA'} \right) \Rightarrow BC \bot HK\)
Suy ra SK là đoạn vuông góc chung của hai đường thẳng AA' và BC.
Do đó \(d\left( {AA',BC} \right) = HK.\)
+ Ta có \(A'H = \frac{{BC}}{2} = a\sqrt 3 ;AH = \sqrt {A{B^2} - B{H^2}} = a\)
Suy ra \(HK = \frac{{AH.A'H}}{{\sqrt {A{H^2} + A'{H^2}} }} = \frac{{a\sqrt 3 }}{2}\).
Vậy \(d\left( {AA',BC} \right) = \frac{{a\sqrt 3 }}{2}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trần Hưng Đạo