Cho hình vuông ABCD cạnh \(a\) trên đường thẳng vuông góc với (ABCD) tại A ta lấy điểm S di động. Hình chiếu vuông góc của A lên SB, SD lần lượt là H, K. Thể tích lớn nhất của tứ diện ACHK bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTham khảo hình vẽ. Ta sẽ sử dụng công thức \(V = \frac{1}{6}a.b.d\left( {a,b} \right).\sin \left( {a,b} \right).\)
Đặt \(SA = x\,\,\left( {x > 0} \right).\) Tính được \(KH = \frac{{{x^2}a\sqrt 2 }}{{{a^2} + {x^2}}},IH = \frac{{{a^2}x}}{{{a^2} + {x^2}}}.\)
Chứng minh được \(HI = d\left( {KH,AC} \right)\) và \(AC \bot HK.\)
Khi đó \({V_{ACHK}} = \frac{1}{6}AC.KH.HI = \frac{1}{6}.a\sqrt 2 .\frac{{{x^2}a\sqrt 2 }}{{{a^2} + {x^2}}}.\frac{{{a^2}x}}{{{a^2} + {x^2}}} = \frac{{{a^4}}}{3}.\frac{{{x^3}}}{{{{\left( {{a^2} + {x^2}} \right)}^2}}}.\)
Xét hàm \(f\left( x \right) = \frac{{{x^3}}}{{{{\left( {{x^2} + {a^2}} \right)}^2}}}\) trên \(\left( {0; + \infty } \right),\) ta có \(\mathop {\max }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = \frac{{3\sqrt 3 }}{{16a}}\) khi \(x = a\sqrt 3 .\)
Suy ra thể tích khối tứ diện lớn nhất bằng \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{{16}}.\)