Cho hình trụ có đáy là hai đường tròn tâm O và O', bán kinh đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B. Đặt \(\alpha \) là góc giữa AB và đáy. Tính \(\tan \alpha \) khi thể tích khối tứ diện OO'AB đạt giá trị lớn nhất.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiLấy điểm \(A' \in \left( {O'} \right),B' \in \left( O \right)\) sao cho AA', BB' song song với trục OO'.
Khi đó ta có lăng trụ đứng OAB'.O'A'B.
Ta có:
\(\begin{array}{l}
{V_{OO'AB}} = {V_{OAB'.O'A'B}} - {V_{A.O'A'B}} - {V_{B.OAB'}}\\
\,\,\,\,\,\,\,\,\,\,\,\,\, = {V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}{V_{OAB'.O'A'B}}\\
\Rightarrow {V_{OO'AB}} = \frac{1}{3}.AA'.{S_{\Delta OAB'}} = \frac{1}{6}AA'.OA.OB.\sin \angle AOB'\\
= \frac{1}{6}.2a.2a.2a.\sin \angle AOB' = \frac{1}{6}.8{a^3}\sin \angle AOB' = \frac{{4{a^3}}}{3}\sin \angle AOB'
\end{array}\)
Do đó để \({V_{OO'AB}}\) lớn nhất \( \Leftrightarrow \sin \angle AOB' = 1 \Leftrightarrow \angle AOB' = {90^0} \Leftrightarrow OA \bot OB'\).
\( \Rightarrow O'A' \bot O'B \Rightarrow \Delta O'A'B\) vuông tại \(O' \Rightarrow A'B = O'A'\sqrt 2 = 2a\sqrt 2 \).
Ta có
\(\begin{array}{l}
AA' \bot \left( {O'A'B} \right) \Rightarrow \angle \left( {AB;\left( {O'A'B} \right)} \right) = \angle ABA' = \alpha \\
\Rightarrow \tan \alpha = \frac{{AA'}}{{A'B}} = \frac{{2a}}{{2a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}
\end{array}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Vĩnh Phúc lần 3