Cho hình trụ có chiều cao h là \(8a\). Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục 1 khoảng bằng \(2a\) thì thiết diện thu được là một hình chữ nhật có diện tích bằng \(48{{a}^{2}}\). Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiCắt hình trụ bởi mặt phẳng \(\left( P \right)\) song song với trục của hình trụ có thiết diện là hình chữ nhật \(ABCD\). Suy ra, \(\left( P \right)\) vuông góc với mặt đáy. Gọi \(I\) là trung điểm của \(AB\). Suy ra \(OI\bot \left( P \right)\). Do đó, khoảng cách giữa \(\left( P \right)\) và trục của hình trụ bằng độ dài \(OI\). Do đó, \(OI=2a\).
Ta có \({{S}_{ABCD}}=AB.AD=AB.8a=48{{a}^{2}}\Rightarrow AB=6a\Rightarrow AI=3a\).
Xét tam giác vuông \(OAI\) ta có: \(OA=\sqrt{A{{I}^{2}}+O{{I}^{2}}}=\sqrt{{{\left( 3a \right)}^{2}}+{{\left( 2a \right)}^{2}}}=a\sqrt{13}\).
Vậy thể tích khối trụ bằng: \(V=\pi {{R}^{2}}h\)\(=\pi {{\left( a\sqrt{13} \right)}^{2}}8a=104\pi {{a}^{3}}\).
Chọn C
Đề thi thử Tốt nghiệp THPT môn Toán năm 2023-2024
Trường THPT Tân Phong