Cho hình phẳng \(\left( H \right)\) giới hạn bởi \(y=2x-{{x}^{2}},\text{ }y=0\). Tính thể tích của khối tròn xoay thu được khi quay \(\left( H \right)\) xung quanh trục Ox ta được \(V=\pi \left( \frac{a}{b}+1 \right)\) với \(a,b\in {{\mathbb{N}}^{*}}\) và \(\frac{a}{b}\) tối giản. Khi đó
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có phương trình hoành độ giao điểm là \(2x - {x^2} = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\).
Thể tích vật thể cần tìm là
\(V = \pi \int\limits_0^2 {{{\left( {2x - {x^2}} \right)}^2}dx = \pi } \int\limits_0^2 {\left( {4{x^2} - 4{x^3} + {x^4}} \right)dx = \pi } \left. {\left( {\frac{{4{x^3}}}{3} - {x^4} + \frac{{{x^5}}}{5}} \right)} \right|_0^2 = \pi \frac{{16}}{{15}} = \pi \left( {\frac{1}{{15}} + 1} \right)\).
Vậy a = 1,b = 15 và ab = 15
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tôn Đức Thắng