Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 Biết rằng \(\widehat {ASB} = \widehat {ASD} = {90^0}\), mặt phẳng chứa AB và vuông góc với (ABCD) cắt SD tại N. Tìm giá trị lớn nhất của thể tích tứ diện DABN.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O = AC \cap BD\) và \(\left( P \right)\) là mặt phẳng chứa AB và vuông góc với \(\left( {ABCD} \right)\).
Ta có \(\left\{ \begin{array}{l}SA \bot SB\\SA \bot SD\end{array} \right. \Rightarrow SA \bot \left( {SBD} \right) \Rightarrow SA \bot BD\)
Và \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\).
Trong \(SAC\) kẻ đường thẳng \(OI \bot AC\,\,\left( {I \in SC} \right)\).
Ta có \(OI \subset \left( {SAC} \right) \Rightarrow OI \bot BD\), \(OI \bot AC \Rightarrow OI \bot \left( {ABCD} \right) \Rightarrow \left( P \right)//\left( {OI} \right)\).
Trong \(\left( {SAC} \right)\) kẻ \(AM//OI\,\,\left( {M \in SC} \right)\).
\(\left( P \right)\) và \(\left( {SCD} \right)\) có điểm M chung, \(AB//CD \Rightarrow \left( P \right) \cap \left( {SCD} \right)\)= đường thẳng qua M và song song với AB, CD.
Trong \(\left( {SCD} \right)\) kẻ \(MN//CD\,\,\left( {N \in SD} \right)\). Khi đó \(\left( P \right) \equiv \left( {ABMN} \right)\).
Ta có \({V_{D.ABN}} = \dfrac{1}{3}{S_{\Delta ABD}}.d\left( {N;\left( {ABD} \right)} \right) = \dfrac{1}{3}{S_{\Delta ABD}}.d\left( {M;\left( {ABD} \right)} \right) = \dfrac{2}{3}{S_{\Delta ABD}}.d\left( {I;\left( {ABD} \right)} \right) = \dfrac{2}{3}IO.{S_{\Delta ABD}}\)
\( \Rightarrow {V_{D.ABN}} = \dfrac{2}{3}IO.\dfrac{1}{2}.4{a^2} = \dfrac{{4{a^2}}}{3}IO\).
Do đó để \({V_{D.ABN}}\) lớn nhất thì \(OI\) phải lớn nhất.
Vì \(SA \bot \left( {SBD} \right)\,\,\left( {cmt} \right) \Rightarrow SA \bot SO \Rightarrow \Delta SOA\) vuông tại S.
Đặt \(SA = x\,\,\left( {0 < x < a\sqrt 2 = OA} \right)\). Ta có \(OA = \dfrac{1}{2}AC = \dfrac{1}{2}.2a\sqrt 2 = a\sqrt 2 \Rightarrow SO = \sqrt {O{A^2} - S{A^2}} = \sqrt {2{a^2} - {x^2}} \).
Kẻ \(SH \bot AC\,\,\left( {H \in AC} \right)\) ta có \(SH = \dfrac{{SA.SO}}{{\sqrt {S{A^2} + S{O^2}} }} = \dfrac{{x.\sqrt {2{a^2} - {x^2}} }}{{\sqrt {{x^2} + 2{a^2} - {x^2}} }} = \dfrac{{x\sqrt {2{a^2} - {x^2}} }}{{a\sqrt 2 }}\); \(OH = \dfrac{{S{O^2}}}{{OA}} = \dfrac{{2{a^2} - {x^2}}}{{a\sqrt 2 }}\).
\(CH = OC + OH = a\sqrt 2 + \dfrac{{2{a^2} - {x^2}}}{{a\sqrt 2 }} = \dfrac{{4{a^2} - {x^2}}}{{a\sqrt 2 }}\)
Áp dụng định lí Ta-lét (OI // SH) ta có:
\(\dfrac{{OI}}{{SH}} = \dfrac{{OC}}{{CH}} \Rightarrow OI = \dfrac{{\dfrac{{x\sqrt {2{a^2} - {x^2}} }}{{a\sqrt 2 }}.a\sqrt 2 }}{{\dfrac{{4{a^2} - {x^2}}}{{a\sqrt 2 }}}} = \dfrac{{x\sqrt {2{a^2} - {x^2}} .a\sqrt 2 }}{{4{a^2} - {x^2}}} = a\dfrac{{x\sqrt {4{a^2} - 2{x^2}} }}{{4{a^2} - {x^2}}}\)
Áp dụng BĐT Cô-si cho hai số không âm\(x\) và \(\sqrt {4{a^2} - 2{x^2}} \) ta có: \(x\sqrt {4{a^2} - 2{x^2}} \le \dfrac{{{x^2} + 4{a^2} - 2{x^2}}}{2} = \dfrac{{4{a^2} - {x^2}}}{2}\)
\( \Rightarrow OI \le a\dfrac{{\dfrac{{4{a^2} - {x^2}}}{2}}}{{4{a^2} - {x^2}}} = \dfrac{a}{2}\). Dấu "=" xảy ra \( \Leftrightarrow x = \sqrt {4{a^2} - 2{x^2}} \Leftrightarrow {x^2} = 4{a^2} - 2{x^2} \Leftrightarrow {x^2} = \dfrac{4}{3}{a^2} \Leftrightarrow x = \dfrac{{2a}}{{\sqrt 3 }}\).
Vậy \({V_{DABN}} \le \dfrac{{4{a^2}}}{3}.\dfrac{a}{2} = \dfrac{{2{a^3}}}{3}\) hay \(\max {V_{DABN}} = \dfrac{{2{a^3}}}{3}\).
Chọn A.