Cho hình chóp S.ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại D lấy điểm S' thỏa mãn \(S'D = \frac{1}{2}SA\) và S, S' ở cùng phía đối với mặt phẳng (ABCD). Gọi V1 là thể tích phần chung của hai khối chóp S.ABCD và S'.ABCD. Gọi V2 là thể tích khối chóp S.ABCD. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi V' là thể tích của khối chóp S'ABCD. M là giao điểm của S'A và SD, từ M kẻ đường thẳng song song với CD cắt S'B tại N.
Ta có:
+) \(V' = \frac{1}{2}{V_2}\) (có cùng diện tích đáy, chiều cao bằng một nửa).
+) \(\frac{{MS'}}{{MA}} = \frac{{S'D}}{{SA}} = \frac{1}{2} \Rightarrow \frac{{S'M}}{{SA}} = \frac{1}{3} \Rightarrow \frac{{S'N}}{{SB}} = \frac{{S'M}}{{SA}} = \frac{1}{3}\).
+) \(\frac{{{V_{S'.MND}}}}{{{V_{S'.ABD}}}} = \frac{{S'M}}{{SA}}.\frac{{S'N}}{{SB}} = \frac{1}{9} \Rightarrow {V_{S'.MND}} = \frac{1}{9}.{V_{S'.ABD}} = \frac{1}{{18}}.V'\).
+) \(\frac{{{V_{S'.NCD}}}}{{{V_{S'.BCD}}}} = \frac{{S'N}}{{SB}} = \frac{1}{3} \Rightarrow {V_{S'.MND}} = \frac{1}{3}.{V_{S'.ABD}} = \frac{1}{6}.V'\).
Suy ra:
+) \({V_1} = V' - {V_{S'.MND}} - {V_{S'.NCD}} = V' - \frac{1}{{18}}.V' - \frac{1}{6}.V' = \frac{7}{9}V' = \frac{7}{{18}}{V_2} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{7}{{18}}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trần Hưng Đạo