Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên \(SA=a\sqrt{5},\) mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm của AB \(\Rightarrow SH\bot \left( ABCD \right)\)
Ta có: AD// BC \(\Rightarrow \) AD// (SBC)
\(\Rightarrow d\left( AD,SC \right)=d\left( AD,\left( SBC \right) \right)=d\left( A;\left( SBC \right) \right)\)
Ta có: \(\frac{HB}{AB}=\frac{d\left( H;\left( SBC \right) \right)}{d\left( A;\left( SBC \right) \right)}=\frac{1}{2}\Rightarrow d\left( A;\left( SBC \right) \right)=2d\left( H;\left( SBC \right) \right)\)
Kẻ \(HK\bot SB\)
Vì \(SH\bot \left( ABCD \right)\Rightarrow SH\bot AB\)
Lại có: \(AB\bot BC\left( gt \right)\Rightarrow AB\bot \left( SBC \right)\Rightarrow HK\bot \left( SBC \right)\)
\(\Rightarrow d\left( H;\left( SBC \right) \right)=HK\)
\(\Rightarrow SH=\sqrt{S{{A}^{2}}-A{{H}^{2}}}=\sqrt{S{{A}^{2}}-{{\left( \frac{AB}{2} \right)}^{2}}}\)
\(=\sqrt{{{\left( a\sqrt{5} \right)}^{2}}-{{a}^{2}}}=2a.\)
Áp dụng hệ thức lượng trong \(\Delta SHB\) vuông tại H, có đường cao HK ta có:
\(HK=\frac{SH.BH}{\sqrt{S{{H}^{2}}+B{{H}^{2}}}}=\frac{2a.a}{\sqrt{{{\left( 2a \right)}^{2}}+{{a}^{2}}}}=\frac{2a}{\sqrt{5}}=\frac{2a\sqrt{5}}{5}\)
\(\Rightarrow d\left( S;\left( SBC \right) \right)=2d\left( H;\left( SBC \right) \right)=2HK=\frac{4a\sqrt{5}}{5}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Long An lần 3