Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy. Biết \(\angle BAC = {30^0},\,\,SA = a\) và \(BA = BC = a\). Gọi \(D\) là điểm đối xứng với \(B\) qua \(AC\). Khoảng cách từ \(B\) đến mặt \(\left( {SCD} \right)\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O\) là trung điểm của \(AC \Rightarrow BO \bot AC \Rightarrow B,\,\,O,\,\,D\) thẳng hàng.
Ta có \(\Delta ABC\) cân tại \(B \Rightarrow \angle BAC = \angle BCA = {30^0} \Rightarrow \angle ABC = {120^0}\). Dễ thấy \(ABCD\) là hình thoi nên \(\angle ADC = \angle ABC = {120^0}\).
Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\,\,\left( {H \in CD} \right)\), trong \(\left( {SAH} \right)\) kẻ \(AK \bot SH\,\,\left( {K \in SH} \right)\).
Ta có : \(\begin{array}{l}\left\{ \begin{array}{l}CD \bot AH\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\\\left\{ \begin{array}{l}AK \bot SH\\AK \bot CD\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right) \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\end{array}\).
Lại có \(AB//CD \Rightarrow AB//\left( {SCD} \right) \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = d\left( {B;\left( {SCD} \right)} \right) = AK\).
Ta có : \(AH = AD.\sin \angle ADH = a.\sin 60 = \dfrac{{a\sqrt 3 }}{2}\)
Xét tam giác vuông SAH có : \(AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \dfrac{{a.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{a\sqrt {21} }}{7}\).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Nguyễn Thái Học