Cho hàm sốphương trình \(\log _{2}^{2}(2x)-(m+2){{\log }_{2}}x+m-2=0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn [1; 2] là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(x>0\)
\(pt\Leftrightarrow {{\left( 1+{{\log }_{2}}x \right)}^{2}}-\left( m+2 \right){{\log }_{2}}x+m-2=0\)
\( \Leftrightarrow \log _2^2x - m{\log _2}x + m - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}
{\log _2}x = 1\\
{\log _2}x = m - 1
\end{array} \right.\)
Ta có: \(x\in \left[ 1\,;\,2 \right]\Leftrightarrow {{\log }_{2}}x\in \left[ 0\,;\,1 \right]\)
Vậy để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ 1\,;\,2 \right]\) khi và chỉ khi \(0\le m-1<1\Leftrightarrow 1\le m<2\)