Cho hàm số f(x) liên tục trên R và có đồ thị như đường cong trong hình vẽ bên.
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {\left| {3 - 2\sqrt {6x - 9{x^2}} } \right|} \right)\). Giá trị 3M - m bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t=3-2\sqrt{6x-9{{x}^{2}}},x\in \left[ 0;\frac{3}{2} \right].\)
Có \(t'=-2.\frac{6-18x}{2\sqrt{6x-9{{x}^{2}}}},t'=0\Leftrightarrow x=\frac{1}{3}.\)
Ta có \(t\left( 0 \right)=3;t\left( \frac{1}{3} \right)=1;t\left( \frac{2}{3} \right)=3,\) hàm số \(t=t\left( x \right)\) liên tục trên \(\left[ 0;\frac{2}{3} \right],\) nên \(t\in \left[ 1;3 \right].\)
Xét hàm số \(y=f\left( t \right)\) trên \(\left[ 1;3 \right].\)
Từ đồ thị hàm số ta có giá trị lớn nhất của hàm số trên \(\left[ 1;3 \right]\) bằng -1 và giá trị nhỏ nhất của hàm số trên \(\left[ 1;3 \right]\) bằng -5.
Vậy \(3M-m=3\left( -1 \right)+5=2.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thái Nguyên