Cho hai số thực x, y thỏa mãn \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 3} \right) + y\left( {y - 3} \right) + xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = 5 - x - ({y^2} + xy - 3y)\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} > 0 \Leftrightarrow x + y > 0\).
Ta có \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 3} \right) + y\left( {y - 3} \right) + xy\)
\(\begin{array}{l} \Leftrightarrow 2{\log _3}\left( {x + y} \right) - 2{\log _3}\left( {{x^2} + {y^2} + xy + 2} \right) = {x^2} + {y^2} + xy - 3{\rm{x}} - 3y\\ \Leftrightarrow 2{\log _3}\left( {x + y} \right) + 2 - 2{\log _3}\left( {{x^2} + {y^2} + xy + 2} \right) = {x^2} + {y^2} + xy + 2 - 3{\rm{x}} - 3y\\ \Leftrightarrow 2{\log _3}\left( {3{\rm{x}} + 3y} \right) + \left( {3{\rm{x}} + 3y} \right) = 2{\log _3}\left( {{x^2} + {y^2} + xy + 3} \right) + {x^2} + {y^2} + xy + 2(*) \end{array}\)
Xét hàm đặc trưng \(f\left( t \right) = 2{\log _3}t + t,t \in \left( {0; + \infty } \right)\), ta có \(f'\left( t \right) = \frac{2}{{t.\ln 3}} + 1 > 0,\forall t \in \left( {0; + \infty } \right)\).
Suy ra hàm f(t) đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
Phương trình (*) \( \Leftrightarrow f\left( {3{\rm{x}} + 3y} \right) = f\left( {{x^2} + {y^2} + xy + 2} \right) \Leftrightarrow {x^2} + {y^2} + xy + 2 = 3{\rm{x}} + 3y\)
\(\begin{array}{l} \Leftrightarrow {y^2} + xy - 3y = - {x^2} + 3x - 2\\ P = 5 + x - ({y^2} + xy - 3y) = {x^2} - 2x + 7 = {\left( {x - 1} \right)^2} + 6 \ge 6 \end{array}\)