Cho hai dao động điều hòa cùng phương với các phương trình lần lượt là \({x_1} = {A_1}\cos \left( {\omega t + 0,35} \right)cm;{x_2} = {A_2}\cos \left( {\omega t - 1,57} \right)cm\). Dao động tổng hợp của hai dao động này có phương trình là \(x = 20\cos \left( {\omega t + \varphi } \right)cm\). Giá trị cực đại của (A1 + A2) gần giá trị nào nhất sau đây?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiÁp dụng định lý hàm số sin ta có:
\(\begin{array}{l} \frac{{{A_1}}}{{\sin \alpha }} = \frac{{{A_2}}}{{\sin \left( {{{20}^0} - \varphi } \right)}} = \frac{A}{{\sin {{70}^0}}}\\ \Rightarrow {A_1} = \frac{A}{{\sin {{70}^0}}}\sin \alpha = \frac{A}{{0,94}}\cos \varphi ;\\ {A_2} = \frac{A}{{\sin {{70}^0}}}.\sin \left( {{{20}^0} - \varphi } \right) = \frac{A}{{0,94}}.\sin \left( {{{20}^0} - \varphi } \right)\\ \Rightarrow {A_1} + {A_2} = \frac{A}{{0,94}}.\left[ {\cos \varphi + \sin \left( {{{20}^0} - \varphi } \right)} \right]\\ = \frac{A}{{0,94}}.\left[ {\cos \varphi + \cos \left( {{{70}^0} + \varphi } \right)} \right]\\ = \frac{{2A}}{{0,94}}\cos \left( {{{35}^0} + \varphi } \right)\cos {35^0} = 1,64A\cos \left( {{{35}^0} + \varphi } \right)\\ \Rightarrow {\left( {{A_1} + {A_2}} \right)_{\max }} = 1,64A = 32,8cm \end{array}\)
Đề thi thử tốt nghiệp THPT QG 2020 môn Vật lý
Trường THPT Thoại Ngọc Hầu