Cho ba vật dao động điều hòa cùng biên độ A = 10 cm nhưng tần số khác nhau. Biết rằng tại mọi thời điểm, li độ và vận tốc của các vật liên hệ với nhau bởi biểu thức \(\frac{{{x}_{1}}}{{{v}_{1}}}+\frac{{{x}_{2}}}{{{v}_{2}}}=\frac{{{x}_{3}}}{{{v}_{3}}}+2021\). Tại thời điểm t, các vật cách vị trí cân băng của chúng lần lượt là 6 cm, 8 cm và \({{x}_{3}}\). Giá trị \({{x}_{3}}\) gần giá trị nào nhất sau đây?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐáp án D
+ Xét đạo hàm sau: \({{\left( \frac{x}{v} \right)}^{'}}=\frac{{x}'.v-{v}'.x}{{{v}^{2}}}=\frac{{{v}^{2}}-a.x}{{{v}^{2}}}=\frac{{{\omega }^{2}}({{A}^{2}}-{{x}^{2}})-(-{{\omega }^{2}}.x).x}{{{\omega }^{2}}({{A}^{2}}-{{x}^{2}})}=\frac{{{A}^{2}}}{{{A}^{2}}-{{x}^{2}}}\) (1)
+ Xét biểu thức: \(\frac{{{x}_{1}}}{{{v}_{1}}}+\frac{{{x}_{2}}}{{{v}_{2}}}=\frac{{{x}_{3}}}{{{v}_{3}}}+2021\)
+ Lấy đạo hàm hai vế và áp dụng đạo hàm (1) ta có:
\({{\left( \frac{{{x}_{1}}}{{{v}_{1}}}+\frac{{{x}_{2}}}{{{v}_{2}}} \right)}^{'}}={{\left( \frac{{{x}_{3}}}{{{v}_{3}}} \right)}^{'}}+{{2021}^{'}}\Leftrightarrow {{\left( \frac{{{x}_{1}}}{{{v}_{1}}} \right)}^{'}}+{{\left( \frac{{{x}_{2}}}{{{v}_{2}}} \right)}^{'}}={{\left( \frac{{{x}_{3}}}{{{v}_{3}}} \right)}^{'}}\)
\(\Rightarrow \frac{{{A}^{2}}}{{{A}^{2}}-x_{1}^{2}}+\frac{{{A}^{2}}}{{{A}^{2}}-x_{2}^{2}}=\frac{{{A}^{2}}}{{{A}^{2}}-x_{3}^{2}}\Rightarrow \frac{{{10}^{2}}}{{{10}^{2}}-{{6}^{2}}}+\frac{{{10}^{2}}}{{{10}^{2}}-{{8}^{2}}}=\frac{{{10}^{2}}}{{{10}^{2}}-x_{3}^{2}}=\frac{625}{144}\)
\(\Rightarrow {{x}_{3}}=\sqrt{\frac{1924}{25}}=8,77(cm)\)
Đề thi thử THPT QG năm 2022 môn Vật Lý
Trường THPT Lê Trung Đình