ADMICRO
Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{2}} \right)^{{x^2} - x}} \ge \dfrac{1}{4}\) có dạng \(\left[ {a;b} \right]\). Khi đó \(a + b\) bằng
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai\(\begin{array}{l}{\left( {\dfrac{1}{2}} \right)^{{x^2} - x}} \ge \dfrac{1}{4} \Leftrightarrow {\left( {\dfrac{1}{2}} \right)^{{x^2} - x}} \ge {\left( {\dfrac{1}{2}} \right)^2}\\ \Leftrightarrow {x^2} - x \le 2 \Leftrightarrow {x^2} - x - 2 \le 0\\ \Leftrightarrow - 1 \le x \le 2\end{array}\)
\(\begin{array}{l} \Rightarrow a = - 1;b = 2\\ \Rightarrow a + b = 1\end{array}\)
Chọn A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 12 năm 2022-2023
Trường THPT Nguyễn Trãi
26/11/2024
100 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK