Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(y = {x^3} - 3{x^2} + 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( C \right)\) có: \(y' = 3{x^2} - 3\)
Gọi \(M\left( {{x_0};{\mkern 1mu} {\mkern 1mu} {y_0}} \right)\) là điểm thuộc đồ thị hàm số \(\left( C \right)\) \( \Rightarrow M\left( {{x_0};{\mkern 1mu} {\mkern 1mu} x_0^3 - 3{x_0} + 2} \right).\)
Khi đó phương trình tiếp tuyến của tại có dạng:
\(\begin{array}{*{20}{l}}{{\mkern 1mu} d:{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 2}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)x - 3x_0^3 + 3{x_0} + x_0^3 - 3{x_0} + 2}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)x - 2x_0^3 + 2}\end{array}\)
Ta có tiếp tuyến \(d\) song song với đường thẳng \(y = 9x - 14\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{3x_0^2 - 3 = 9}\\{ - 2x_0^3 + 2 \ne {\rm{\;}} - 14}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x_0^2 = 4}\\{x_0^3 \ne 8}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{{x_0} = 2}\\{{x_0} = {\rm{\;}} - 2}\end{array}} \right.}\\{{x_0} \ne 2}\end{array}} \right. \Leftrightarrow {x_0} = {\rm{\;}} - 2\)\( \Rightarrow M\left( { - 2;{\mkern 1mu} {\mkern 1mu} 16} \right)\)
Vậy có 1 điểm \(M\left( { - 2;{\mkern 1mu} {\mkern 1mu} 16} \right)\) thỏa mãn bài toán.
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2023-2024
Trường THPT Trần Hữu Trang