Cho hình chóp S.ABCD có đáy là hình thoi cạnh aa, ∠BAD=600∠BAD=600, cạnh bên SA=aSA=a và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ BB đến mặt phẳng (SCD)(SCD)?
Câu 26: Cho hàm số y=x+3−1−xy=x+3−1−x. Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số nghịch biến trên các khoảng (−∞;−1)(−∞;−1) và (−1;+∞)(−1;+∞).
B. Hàm số đồng biến trên các khoảng (−∞;1)(−∞;1) và (1;+∞)(1;+∞).
C. Hàm số đồng biến trên R∖{1}.
D. Hàm số đồng biến trên (2;+∞).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
- Chứng minh d(B;(SCD))=d(A;(SCD)).
- Xác định khoảng cách từ A đến (SCD).
- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Lời giải chi tiết:
Ta có AB∥CD(gt)⇒AB∥(SCD) ⇒d(B;(SCD))=d(A;(SCD)).
Trong (ABCD) kẻ AH⊥CD.
Vì ∠BAD=600⇒∠ADC=1200 nên điểm H nằm ngoài đoạn thẳng CD.
Trong (SAH) dựng AK⊥SH(H∈SH) ta có:
{CD⊥AHCD⊥SA(SA⊥(ABCD)) ⇒CD⊥(SAH)⇒CD⊥AK.
{AK⊥SHAK⊥CD⇒AK⊥(SCD)⇒d(A;(SCD))=AK.
Xét tam giác vuông AHD có ∠ADH=1800−∠ADC=600, AD=a ⇒AH=AD.sin600=a√32.
Vì SA⊥(ABCD) nên SA⊥AH, suy ra tam giác SAH vuông tại A, áp dụng hệ thức lượng trong tam giác vuông ta có: AK=SA.AH√SA2+AH2 =a.a√32√a2+3a24=a√217.
Vậy d(B;(SCD))=a√217.
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2023 - 2024
Trường THPT Bắc Ninh