Tìm tất cả các điểm thuộc đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaaGOmaiaadIhacqGHRaWkcaaIXaaabaGaamiEaiab % gkHiTiaaigdaaaaaaa!3E03! y = \frac{{2x + 1}}{{x - 1}}\) có khoảng cách đến trục hoành bằng 1
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi M là điểm thuộc đồ thị hàm số, nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm % aabaGaamiEaiaacUdacaaMc8+aaSaaaeaacaaIYaGaamiEaiabgUca % RiaaigdaaeaacaWG4bGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaaa % a!41A1! M\left( {x;\,\frac{{2x + 1}}{{x - 1}}} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaamytaiaacYcacaaMc8UaaGzaVlaad+eacaWG4baacaGLOaGa % ayzkaaGaeyypa0JaaGymaaaa!408F! d\left( {M,\,Ox} \right) = 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aaq % WaaeaadaWcaaqaaiaaikdacaWG4bGaey4kaSIaaGymaaqaaiaadIha % cqGHsislcaaIXaaaaaGaay5bSlaawIa7aiabg2da9iaaigdaaaa!433E! \Leftrightarrow \left| {\frac{{2x + 1}}{{x - 1}}} \right| = 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aaq % WaaeaacaaIYaGaamiEaiabgUcaRiaaigdaaiaawEa7caGLiWoacqGH % 9aqpdaabdaqaaiaadIhacqGHsislcaaIXaaacaGLhWUaayjcSdGaey % i1HS9aamqaaqaabeqaaiaadIhacqGH9aqpcqGHsislcaaIYaaabaGa % amiEaiabg2da9iaaicdaaaGaay5waaaaaa!4F5C! \Leftrightarrow \left| {2x + 1} \right| = \left| {x - 1} \right| \Leftrightarrow \left[ \begin{array}{l} x = - 2\\ x = 0 \end{array} \right.\)