Tìm tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaio % dacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaaiabgwMiZkabgkHi % Tiaaigdaaaa!45AC! {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge - 1\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaio % dacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaaiabgwMiZkabgkHi % Tiaaigdaaaa!45AC! {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge - 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aai % qaaqaabeqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI % ZaGaamiEaiabgUcaRiaaikdacqGH+aGpcaaIWaaabaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabeaa % kmaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaio % dacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaaiabgwMiZkGacYga % caGGVbGaai4zamaaBaaaleaadaWcaaqaaiaaigdaaeaacaaIYaaaaa % qabaGcdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGa % ayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaakiaawUhaaaaa!58F4! \Leftrightarrow \left\{ \begin{array}{l} {x^2} - 3x + 2 > 0\\ {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge {\log _{\frac{1}{2}}}{\left( {\frac{1}{2}} \right)^{ - 1}} \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aai % qaaqaabeqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI % ZaGaamiEaiabgUcaRiaaikdacqGH+aGpcaaIWaaabaGaamiEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaiodacaWG4bGaey4kaSIaaGOm % aiabgsMiJkaaikdaaaGaay5Eaaaaaa!4A0D! \Leftrightarrow \left\{ \begin{array}{l} {x^2} - 3x + 2 > 0\\ {x^2} - 3x + 2 \le 2 \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aai % qaaqaabeqaamaadeaaeaqabeaacaWG4bGaeyOpa4JaaGOmaaqaaiaa % dIhacqGH8aapcaaIXaaaaiaawUfaaaqaaiaaicdacqGHKjYOcaWG4b % GaeyizImQaaG4maaaacaGL7baaaaa!45CD! \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x > 2\\ x < 1 \end{array} \right.\\ 0 \le x \le 3 \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aam % qaaqaabeqaaiaaicdacqGHKjYOcaWG4bGaeyipaWJaaGymaaqaaiaa % ikdacqGH8aapcaWG4bGaeyizImQaaG4maaaacaGLBbaaaaa!43AB! \Leftrightarrow \left[ \begin{array}{l} 0 \le x < 1\\ 2 < x \le 3 \end{array} \right.\)