Phương trình \(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\) có nghiệm là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\) \(\displaystyle \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} - {3^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} - {4.2^{{x^2}}}\) \( \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} + {4.2^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} + {3^{{x^2}}}\)
\(\displaystyle \Leftrightarrow \frac{9}{2}{.2^{{x^2}}} = \frac{4}{3}{.3^{{x^2}}} \)
\(\begin{array}{l}
\Leftrightarrow {27.2^{{x^2}}} = {8.3^{{x^2}}}\\
\Leftrightarrow \frac{{{2^{{x^2}}}}}{{{3^{{x^2}}}}} = \frac{8}{{27}}
\end{array}\)
\(\Leftrightarrow {\left( {\frac{2}{3}} \right)^{{x^2}}} = {\left( {\frac{2}{3}} \right)^3}\)
\(\displaystyle \Leftrightarrow {x^2} = 3 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 3 \\x = - \sqrt 3 \end{array} \right.\)