Nghiệm của bất phương trình \(\displaystyle {11^{\sqrt {x + 6} }} \ge {11^x}\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\displaystyle {11^{\sqrt {x + 6} }} \ge {11^x}\)
\(\displaystyle \Leftrightarrow\sqrt {x + 6} \ge x\)\(\displaystyle \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 6 \ge 0\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\x + 6 \ge {x^2}\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge - 6\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\{x^2} - x - 6 \le 0\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l} - 6 \le x < 0\\\left\{ \begin{array}{l} - 2 \le x \le 3\\x \ge 0\end{array} \right.\end{array} \right.\)
\(\displaystyle \Leftrightarrow \left[ \begin{array}{l} - 6 \le x < 0\\0 \le x \le 3\end{array} \right.\)\(\displaystyle \Leftrightarrow - 6 \le x \le 3\)