Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo \(\vec v = ( - 2; - 1)\), phép tịnh tiến theo \(\vec v\)biến parabol \((P):y = {x^2}\) thành parabol \((P')\). Khi đó phương trình của \((P')\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiLấy \(M (x;y)\) tùy ý trên \((P)\).
Gọi \(M'(x';y') = {T_{\vec v}}(M)\)
Vì \({T_{\vec v}}(P) = (P')\) nên \(M' \in (P')\)
Ta có: \({T_{\vec v}}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x - 2}\\{y' = y - 1}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x' + 2}\\{y = y' + 1}\end{array} \Rightarrow M\left( {x' + 2;y' + 1} \right)} \right.\)
Vì \(M\left( {x' + 2;y' + 1} \right) \in (P)\) nên \(y' + 1 = {\left( {x' + 2} \right)^2}\)\( \Leftrightarrow y' = {x'^2} + 4x' + 3\)
Mà \(M' \in (P')\)
Vậy phương trình của \((P'):y = {x^2} + 4x + 3\)
Chọn C.
Đề thi giữa HK1 môn Toán 11 năm 2022-2023
Trường THPT Trần Phú