ADMICRO
Tìm số hạng chứa \({x^{29}}\) trong khai triển theo nhị thức Niu-tơn của \({\left( {{x^2} - x} \right)^n},\) biết \(n\) là số nguyên dương thỏa mãn \(2C_n^2 - 19n = 0.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có:
\(2C_n^2 - 19n = 0\) \( \Leftrightarrow 2.\dfrac{{n\left( {n - 1} \right)}}{2} - 19n = 0\) \( \Leftrightarrow {n^2} - n - 19n = 0\) \( \Leftrightarrow {n^2} - 20n = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n = 0\left( {loai} \right)\\n = 20\left( {TM} \right)\end{array} \right.\)
Số hạng tổng quát \(C_{20}^k{\left( {{x^2}} \right)^{20 - k}}.{x^k} = C_{20}^k{x^{40 - k}}\)
Số hạng chứa \({x^{29}}\) ứng với \(40 - k = 29 \Leftrightarrow k = 11\).
Vậy số hạng đó là \(C_{20}^{11}{x^{29}}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Hà Huy Tập
27/11/2024
122 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK