Rút gọn biểu thức: \(\displaystyle {4 \over {\sqrt x + 2}} + {2 \over {\sqrt x - 2}} - {{5\sqrt x - 6} \over {x - 4}} \) với \(\displaystyle x ≥ 0\) và \(\displaystyle x ≠ 4\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\displaystyle \eqalign{ & {4 \over {\sqrt x + 2}} + {2 \over {\sqrt x - 2}} - {{5\sqrt x - 6} \over {\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} \cr & = {{4\left( {\sqrt x - 2} \right) + 2\left( {\sqrt x + 2} \right) - \left( {5\sqrt x - 6} \right)} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cr & = {{4\sqrt x - 8 + 2\sqrt x + 4 - 5\sqrt x + 6} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cr & = {{\sqrt x + 2} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = {1 \over {\sqrt x - 2}} \cr} \)
Đề thi thử vào lớp 10 năm 2021 môn Toán Trường
THCS Nguyễn Đình Chiểu