Một ao sen có dạng hình thang \(ABCD\left( {AB//CD} \right)\) với \(AB = 35{\rm{\;m}},CD = 56{\rm{\;m}}\). Người ta chọn một vị trí \(E\) ở trên bờ \({\rm{AD}}\) sao cho \(AE = \frac{3}{4}ED\) và bắc một cây cầu \({\rm{EF}}\) song song với hai bờ \(AB,CD\left( {F \in BC} \right)\). Để mọi người có thể đi trên cầu buổi tối ngắm sen, người ta căng đèn trang trí dọc theo cây cầu đó với khoảng cách giữa hai chiếc đèn liên tiếp là \(2{\rm{\;m}}\) và cả hai đầu cầu đều có đèn. Tính số tiền cần dùng để mua đèn trang trí cho cây cầu đó, biết giá mỗi chiếc đèn là 15000 đồng.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M\) là giao điểm của \({\rm{AC}}\) và \({\rm{EF}}\).
Vì \(AE = \frac{3}{4}ED\) nên \(\frac{{AE}}{3} = \frac{{ED}}{4} = \frac{{AE + ED}}{{3 + 4}} = \frac{{AD}}{7}\) suy ra \(\frac{{AE}}{{AD}} = \frac{3}{7};\frac{{ED}}{{AD}} = \frac{4}{7}\)
Xét \(\Delta ACD,ME//CD\) suy ra \(\frac{{AE}}{{AD}} = \frac{{EM}}{{CD}}\) (hệ quả của định lí Thales) nên \(\frac{{ME}}{{56}} = \frac{3}{7}\) hay \(ME = 24{\rm{\;m}}\).
\(\frac{{MC}}{{AC}} = \frac{{DE}}{{DA}}\) (định lí Thales) (1)
Xét \(\Delta ABC,MF//AB\) nên \(\frac{{MC}}{{AC}} = \frac{{MF}}{{AB}}\) (định lí Thales) (2)
Từ (1), (2) suy ra \(\frac{{MF}}{{AB}} = \frac{{DE}}{{DA}}\) hay \(\frac{{MF}}{{35}} = \frac{4}{7}\) suy ra \(MF = 20{\rm{\;m}}\).
Ta có \(EF = ME + MF = 24 + 20 = 44\left( {{\rm{\;m}}} \right)\).
Số chiếc đèn cần dùng để trang trí dọc theo cây cầu EF là: \(\left( {44:2} \right) + 1 = 23\).
Số tiền cần dùng để mua đèn trang trí cho cây cầu đó là: \(15000.23 = 345000\) (đồng).
Đáp án A.
Đề thi giữa HK2 môn Toán 8 CTST năm 2023-2024
Trường THCS Trung Châu