Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 5{\rm{\;cm}}\) và \(BC = 13{\rm{\;cm}}\). Qua trung điểm \(M\) của \({\rm{AB}}\), vẽ một đường thẳng song song với \({\rm{AC}}\) cắt \({\rm{BC}}\) tại \({\rm{N}}\). Tính độ dài \({\rm{MN}}\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiÁp dụng định lí Pythagore vào \(\Delta {\rm{ABC}}\) vuông tại \({\rm{A}}\) có: \({\rm{B}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2}\) hay \({\rm{A}}{{\rm{C}}^2} = {\rm{B}}{{\rm{C}}^2} - {\rm{A}}{{\rm{B}}^2} = {13^2} - {5^2} = 144\) suy ra \({\rm{AC}} = 12{\rm{\;cm}}\)
Xét \(\Delta {\rm{ABC}}\) có \({\rm{MA}} = {\rm{MB}}\) (theo gt); \({\rm{MN}}//{\rm{AC}}\) (theo gt) nên \({\rm{NB}} = {\rm{NC}}\)
Do đó \({\rm{MN}}\) là đường trung bình của \(\Delta {\rm{ABC}}\) suy ra \({\rm{MN}} = \frac{1}{2}{\rm{AC}}\) hay \({\rm{MN}} = \frac{1}{2} \cdot 12 = 6\left( {{\rm{\;cm}}} \right)\).
Đáp án A.
Đề thi giữa HK2 môn Toán 8 CTST năm 2023-2024
Trường THCS Trung Châu