Giải phương trình \({\cos ^3}x - {\sin ^3}x = \cos 2x\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \({\cos ^3}x - {\sin ^3}x = \cos 2x\)
\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x} \right) = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\)
\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x - \sin x - \cos x} \right) = 0\)
\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {\sin x - 1} \right)\left( {\cos x - 1} \right) = 0\)
\(\Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\sin x = 1\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{2} + k2\pi \\x = k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Đề thi giữa HK1 môn Toán 11 năm 2020
Trường THPT Hùng Vương