Cho tam giác ABC có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến tam giác ABC thành tam giác NPM?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi G là trọng tâm tam giác ABC. Khi đó
\(\overrightarrow {GN} = - \frac{1}{2}\overrightarrow {GA} \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( A \right) = N\)
\(\overrightarrow {GP} = - \frac{1}{2}\overrightarrow {GB} \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( B \right) = P\)
\(\overrightarrow {GM} = - \frac{1}{2}\overrightarrow {GC} \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( C \right) = M\)
Vậy \({V_{\left( {G, - \frac{1}{2}} \right)}}\left( {\Delta ABC} \right) = \Delta NPM\)
Đề thi HK1 môn Toán 11 năm 2020
Trường THPT Nguyễn Thượng Hiền