Cho parabol (P): \(y = \dfrac{1}{4}{x^2}\) và đường thẳng (D): \(y = \dfrac{3}{2}x + m\) đi qua điểm C(6; 7). Hãy tìm tọa độ giao điểm của đường thẳng (D) và đồ thị (P).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐường thẳng (D) \(y = \dfrac{3}{2}x + m\) đi qua điểm C(6;7) nên ta có:
\(7 = \dfrac{3}{2}.6 + m \Leftrightarrow m = - 2\)
Khi đó đường thẳng (D) có dạng: \(y = \dfrac{3}{2}x - 2\)
Hoành độ giao điểm của (D) và (P) là nghiệm của phương trình:
\(\begin{array}{l}\dfrac{1}{4}{x^2} = \dfrac{3}{2}x - 2\\ \Leftrightarrow {x^2} - 6x + 8 = 0\\ \Leftrightarrow {x^2} - 2x - 4x + 8 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - 4\left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 4\end{array} \right.\end{array}\)
Với x = 2 ta có \(y = \dfrac{1}{4}{.2^2} = 1 \Rightarrow \left( {2;1} \right)\)
Với x = 4 ta có: \(y = \dfrac{1}{4}{.4^2} = 4 \Rightarrow \left( {4;4} \right)\)
Vậy tọa độ giao điểm của (D) và (P) là: (2;1) và (4;4).