Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Thể tích nhà kho là \(10000\,{{m}^{3}}\) nên ta có:
\(V={{x}^{2}}.y=10000\Leftrightarrow y=\frac{10000}{{{x}^{2}}}\)
Diện tích sàn cần thi công là: \({{x}^{2}}\)
Diện tích mái cần thi công là: \({{x}^{2}}\)
Diện tích vách cần thi công là: \(3xy=3x.\frac{10000}{{{x}^{2}}}=\frac{30000}{x}\)
Tổng chi phí thi công là:
\(C(x)=5{{x}^{2}}+10{{x}^{2}}+8.\frac{30000}{x}=15{{x}^{2}}+\frac{240000}{x}\)
\(C'(x)=30x-\frac{240000}{{{x}^{2}}}\)
Bảng biến thiên:
Tổng chi phí thi công nhà kho là thấp nhất khi x = 20.
diện tích sàn nhà kho bằng \(400\,{{m}^{2}}\)
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 02 được biên soạn nhằm hỗ trợ học sinh ôn luyện hiệu quả, làm quen với cấu trúc đề thi chính thức và nâng cao kỹ năng giải toán. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình THPT, với 70-80% nội dung thuộc lớp 12, phần còn lại được chọn lọc từ chương trình lớp 11 và lớp 10, đảm bảo sự kết nối kiến thức giữa các lớp học. Các chuyên đề trọng tâm như hàm số, đạo hàm, số phức, hình học không gian, tổ hợp - xác suất và phương pháp tọa độ trong mặt phẳng đều được tích hợp đầy đủ trong đề thi. Cấu trúc đề thi gồm 3 phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, tạo cơ hội để học sinh tiếp cận và giải quyết các bài toán từ cơ bản đến nâng cao. Đây là tài liệu ôn tập quan trọng giúp học sinh xây dựng nền tảng vững chắc, rèn luyện tư duy toán học và đạt kết quả cao trong kỳ thi tốt nghiệp THPT 2025.
Câu hỏi liên quan
Nhà máy A chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy Hai nhà máy này thoả thuận rằng, hằng tuần A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 sản phẩm). Nếu số lượng đặt hàng là \(x\) sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất \(x\) sản phẩm trong một tuần là \(C\left( x \right)=100+30x\) (triệu đồng) (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi sản phẩm). Hỏi nhà máy A bán cho nhà máy B bao nhiêu sản phẩm mỗi tuần để thu được lợi nhuận nhiều nhất? (Số sản phẩm là số nguyên dương).
Một ông chủ nhà muốn làm một cái thang cứu hộ khi có nguy hiểm xảy ra. Ông ta muốn làm cái thang để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà. Với hàng rào cao 2,4 mét được đặt song song và cách bức tường của ngôi nhà một khoảng bằng 1,5 mét. Chiều dài ngắn nhất của cây thang bao nhiêu mét để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà (tham khảo hình vẽ) (làm tròn đến chữ số thập phân thứ 2)?
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?
Một nguời bình thường với chiều cao \(h\text{ }\!\!~\!\!\text{ cm}\), nặng \(w\) kilogram có diện tích bề mặt cơ thể \(S\) được mô hình hoá bởi công thức \(S=\frac{1}{60}\cdot {{w}^{0.5}}\cdot {{h}^{0.5}}\) (\({{\text{m}}^{2}}\)) (công thức Mosteller). Một đối tượng có chiều cao bằng 168 cm, nặng 62 kg tham gia một cuộc nghiên cứu về sức khỏe trong 5 năm. Người ta nhận thấy cân nặng của đối tượng quan sát thay đổi với tốc độ \({w}'\left( t \right)=0,02{{t}^{2}}+0,2t\text{ }\!\!~\!\!\text{ kg}/\) năm \(\left( 0\le t\le 5 \right)\) và chiều cao tăng đều mỗi năm \(0,5\text{ }\!\!~\!\!\text{ cm}\). Sau 5 năm quan sát, diện tích bề mặt cơ thề của đối tượng trên tăng thêm bao nhiêu centimet vuông so với ban đầu? (làm tròn kết quả đến hàng đơn vi).
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất (làm tròn kết quả đến hàng đơn vị)?
Một căn nhà bỏ hoang có dạng hình lập phương cạnh bằng 5m có 3 chú nhện sinh sống. Mùa đông đến, vì đói rét nên chúng đành quyết định hợp tác với nhau giăng lưới để bắt mồi. Ba chú nhện tính toán sẽ giăng một mảnh lưới hình tam giác theo cách sau: Mỗi chú nhện sẽ đứng ở mép tường bất kỳ ( có thể mép giữa 2 bức tường,giữa tường với trần nhà, hoặc giữa tường với với nền), rồi phóng những sợi tơ làm khung đến vị trí của 2 con nhện còn lại rồi sau đó mới phóng tơ dính đan phần lưới bên trong. Chúng quy định không có bất kỳ 2 con nhện nào nằm cùng trên một mặt tường, nền hoặc trần nhà. Chu vi nhỏ nhất của mảnh lưới ấy (các sợi tơ khung căn và không chùm) là \(\frac{m\sqrt{n}}{p}\) (với \(m,n,p\in {{\mathbb{N}}^{*}}\)) và \(\frac{m}{p}\) là phân số tối giản. Tính giá trị của biểu thức \(m+n+p\) ?
Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).
Một người nông dân có 15 000 000 đồng để làm một cái hàng rào hình chữ E dọc theo con sông (như hình vẽ) để làm một khu đất có hai phần chữ nhật để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí vật liệu là 60 000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng một mét. Tìm diện tích lớn nhất của đất rào thu được.
Một nhà máy sản xuất \(\text{ }x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí
\(C\left( x \right)=16\,000+500x-1,6{{x}^{2}}+0,004{{x}^{3}}\) (nghìn đồng).
Biết giá bán của của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right)=1700-7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ được tiêu thụ hết.
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi \(P\left( t \right)\) là số học sinh bị nhiễm virus cúm ở ngày thứ \(t\) tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virut cúm theo hệ số tỉ lệ là hằng số \(k\ne 0\). Số học sinh bị nhiễm virus cúm sau 4 ngày là 52 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Theo Định luật Hooke, lực cần dùng để kéo giãn lò xo thêm \(x\) mét từ độ dài tự nhiên là \(f\left( x \right)=k.x\left( N \right)\) với \(k\left( N/m \right)\) là độ cứng của lò xo. Một lực \(50N\) được dùng để kéo giãn lò xo từ \(10cm\)đến độ dài \(15cm\). Hỏi cần thực hiện một công là bao nhiêu để kéo giãn lò xo từ \(15cm\) đến \(20cm\)?
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cho nhà máy \(B\). Hai nhà máy thỏa thuận rằng, hằng tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(X\) tấn sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để \(A\) sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Nhà máy\(A\) bán cho \(B\) bao nhiêu tấn sản phẩm để lợi nhuận thu được là lớn nhất? (làm tròn kết quả đến hàng phần mười).
Một tấm bìa cứng có kích thước \(60\text{ }\!\!~\!\!\text{ cm}\times 90\text{ }\!\!~\!\!\text{ cm}\) được gấp đôi thành một hình chữ nhật \(60\text{ }\!\!~\!\!\text{ cm}\times 45\text{ }\!\!~\!\!\text{ cm}\) như hình vẽ. Sau đó, cắt ra từ các góc của hình chữ nhật vừa gấp bốn hình vuông bằng nhau có cạnh \(x\left( \text{cm} \right)\). Tấm bìa được mở ra và sáu mép được gấp lên để tạo thành một hộp chữ nhật \(\left( \mathbf{H} \right)\) có nắp và đáy (như hình vẽ). Thể tích lớn nhất của khối \(\left( \mathbf{H} \right)\) bằng bao nhiêu lít? (làm tròn kết quả đến hàng phần mười).
Một nhà địa chất học đang ở tại điểm \(A\) trên sa mạc. Anh ta muốn đến điểm \(B\) và cách \(A\) một đoạn là 70 km. Trong sa mạc thì xe anh ta chỉ có thể di chuyển với vận tốc là \(30\text{km}/\text{h}\). Nhà địa chất phải đến được điểm \(B\) sau 2 giờ. Vì vậy, nếu anh ta đi từ \(A\) đến \(B\) sẽ không thể đến đúng giờ được. May mắn thay, có một con đường nhựa song song với đường nối \(A\) và \(B\) và cách AB một đoạn 10 km. Trên đường nhựa đó thì xe nhà địa chất này có thể di chuyển với vận tốc \(50\text{km}/\text{h}\). Thời gian ngắn nhật đề nhà địa chất di chuyển từ \(A\) đến \(B\) là bao nhiêu phút?
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy \(B\). Hai nhà máy thoả thuận rằng, hàng tháng nhà máy \(A\) cung cấp cho nhà máy \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm. Nhà máy \(A\) cần bán cho nhà máy \(B\) bao nhiêu tấn sản phẩm mỗi tháng để lợi nhuận thu được lớn nhất? (Làm tròn kết quả đến hàng phần mười).
Ông Toàn có một mảnh đất phẳng hình elip có độ dài trục lớn bằng \({16}\) m và độ dài trục nhỏ là \({10}\) m. Ông để một dải đất rộng \({8}\) m làm sân, lối đi và dải đất này nhận trục bé của elip làm trục đối xứng đồng thời ông muốn trồnghoa hai bên mảnh đất còn lại. Biết kinh phí để trồng hoa là \({100\,000}\) đồng/m\({^2}\). Hỏi ông Toàn cần bao nhiêu triệu đồng trồng hoa trên phần đất đó (kết quả được làm tròn đến hàng trăm)?
Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách 300 km để tới nơi sinh sản. Vận tốc dòng nước là \(6\text{ }\!\!~\!\!\text{ km}/\text{h}\). Giả sử vận tốc hơi của cả khi mước đứng yên là \(v\text{ }\!\!~\!\!\text{ km}/\text{h}\) thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right)=c{{v}^{3}}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tính vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Một cái cổng hình parabol như hình bên. Chiều cao \({GH=4}\) m, chiều rộng \({AB=4}\) m, \({AC=BD=0{,}9}\) m. Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \({CDEF}\) tô đậm với giá \({1\,200\,000}\) đồng/m\({^2}\), phần còn lại làm khung hoa sắt với giá \({900\,000}\) đồng/\({{m}^{2}}\).
Nhà ông Hải có một cái cổng hình chữ nhật, lối vào cổng có dạng parabol có kích thước như hình vẽ.
Ông Hải cần trang trí bề mặt (phần gạch chéo) của cổng. Hỏi ông Hải cần bao nhiêu tiền (đơn vị: triệu đồng) để trang trí, biết giá thành trang trí là 1200000 đồng/m²?
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức \(G(x)=0,024x2(30-x)\), trong đó \(x\) là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp ( \(x\) được tính bằng mg). Tìm lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.