Theo Định luật Hooke, lực cần dùng để kéo giãn lò xo thêm \(x\) mét từ độ dài tự nhiên là \(f\left( x \right)=k.x\left( N \right)\) với \(k\left( N/m \right)\) là độ cứng của lò xo. Một lực \(50N\) được dùng để kéo giãn lò xo từ \(10cm\)đến độ dài \(15cm\). Hỏi cần thực hiện một công là bao nhiêu để kéo giãn lò xo từ \(15cm\) đến \(20cm\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Khi lò xo được kéo giãn từ độ dài từ \(10cm\) đến\(15cm\), thì lượng kéo giãn là \(x=15-10=5cm\Rightarrow x=0,05m\). Điều này có nghĩa là \(f\left( 0,05 \right)=50\Rightarrow 0,05.k=50\Rightarrow k=50:0,05=1000\left( N/m \right)\).
Do đó, ta có:
\(f\left( x \right)=1000.x\left( N \right)\) và công cần thực hiện để kéo giãn lò xo từ \(15cm\) đến \(20cm\) là
\(A=\int\limits_{0,15}^{0,2}{1000xdx=1000\cdot \frac{{{x}^{2}}}{2}}\left| \begin{align} & 0,2 \\ & 0,15 \\ \end{align} \right.=1000\cdot \left( \frac{{{0.2}^{2}}}{2}-\frac{0,{{15}^{2}}}{2} \right)=8,75\left( J \right)\).
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Nhà máy A chuyên sản xuất một loại sản phẩm cho nhà máy Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 tấn sản phẩm). Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi tấn sản phẩm). Hỏi Nhà máy B đặt đơn hàng bao nhiêu tấn thì nhà máy A thu được lợi nhuận lớn nhất? (làm tròn kết quả đến hàng phần mười).
Một bể cá đầy nước có dạng hình hộp chữ nhật \(ABCD.EFGH\) với \(AB=6\left( dm \right)\), \(AD=8\left( dm \right)\) và cạnh bên bằng \(10\left( dm \right)\). Một chú cá con bơi theo những đoạn thẳng từ điểm \(G\) đến chạm mặt đáy của hồ, rồi từ điểm đó bơi đến vị trí điểm \(M\) là trung điểm của \(AF\) được mô hình hóa như hình vẽ sau:
Để đường đi ngắn nhất thì chú cá bơi đến điểm dưới đáy hồ cách \(BA\) và \(BC\) những đoạn bằng \(a\) và \(b\). Khi đó tổng \(D=3a+6b\) bằng bao nhiêu?
Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng \(3\,\,\text{km}\) (như hình vẽ).
Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\) và \(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền \(6\,\,\text{km/}\,\text{h}\), chạy \(8\,\,\text{km/}\,\text{h}\) và quãng đường \(BC=8\,\,\text{km}\). Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Gọi \(x\,\,\left( \text{km} \right)\) là độ dài quãng đường \(BD\). Xét tính đúng sai trong các khẳng định sau:
Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách 300 km để tới nơi sinh sản. Vận tốc dòng nước là \(6\text{ }\!\!~\!\!\text{ km}/\text{h}\). Giả sử vận tốc hơi của cả khi mước đứng yên là \(v\text{ }\!\!~\!\!\text{ km}/\text{h}\) thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right)=c{{v}^{3}}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tính vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Một cái cổng hình parabol như hình bên. Chiều cao \({GH=4}\) m, chiều rộng \({AB=4}\) m, \({AC=BD=0{,}9}\) m. Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \({CDEF}\) tô đậm với giá \({1\,200\,000}\) đồng/m\({^2}\), phần còn lại làm khung hoa sắt với giá \({900\,000}\) đồng/\({{m}^{2}}\).
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếMột cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi \(x\) là số ti vi bán được mỗi tuần, \(p\) (triệu đồng) là giá bán của mỗi ti vi. Khi đó \(p=p\left( x \right)\) được gọi là hàm cầu.
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?
Độ pH của một dung dịch là đại lượng đặc trưng cho mức độ acid, base của một dung dịch. pH liên hệ trực tiếp với nồng độ \({{\text{H}}^{+}}\)thông qua biểu thức sau:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \left[ {{\text{H}}^{+}} \right] \right).\)
Trong đó: \(\left[ {{\text{H}}^{+}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \({{\text{H}}^{+}}\)có trong dung dịch cần xét.
Hơn nữa:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \frac{{{10}^{-14}}}{\left[ \text{O}{{\text{H}}^{-}} \right]} \right)\).
Trong đó: \(\left[ \text{O}{{\text{H}}^{-}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \(\text{O}{{\text{H}}^{-}}\)có trong dung dịch cần xét.
Xét thí nghiệm hóa học dưới đây:
Người ta muốn xác định độ pH của một dung dịch bằng cách trộn \(0,2\left( L \right)\) dung dịch \({{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}\) có \({{\text{n}}_{{{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}}}=0,02\text{ }\!\!~\!\!\text{ mol}\) với \(0,5\left( L \right)\) dung dịch NaOH có \({{\text{n}}_{\text{NaOH}}}=0,06\text{ }\!\!~\!\!\text{ mol}\). Tính độ pH của dung dịch tạo thành (làm tròn đến chữ số thập phân thứ nhất).
Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo kết quả kinh doanh của mình, ông ta xác định được rằng: nếu giá vé vào cửa là 20 (nghìn đồng) /người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 (nghìn đồng) /người thì sẽ mất 100 khách hàng hoặc giảm đi 1 (nghìn đồng) /người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 (nghìn đồng) lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để thu nhập là lớn nhất.
Một nguời bình thường với chiều cao \(h\text{ }\!\!~\!\!\text{ cm}\), nặng \(w\) kilogram có diện tích bề mặt cơ thể \(S\) được mô hình hoá bởi công thức \(S=\frac{1}{60}\cdot {{w}^{0.5}}\cdot {{h}^{0.5}}\) (\({{\text{m}}^{2}}\)) (công thức Mosteller). Một đối tượng có chiều cao bằng 168 cm, nặng 62 kg tham gia một cuộc nghiên cứu về sức khỏe trong 5 năm. Người ta nhận thấy cân nặng của đối tượng quan sát thay đổi với tốc độ \({w}'\left( t \right)=0,02{{t}^{2}}+0,2t\text{ }\!\!~\!\!\text{ kg}/\) năm \(\left( 0\le t\le 5 \right)\) và chiều cao tăng đều mỗi năm \(0,5\text{ }\!\!~\!\!\text{ cm}\). Sau 5 năm quan sát, diện tích bề mặt cơ thề của đối tượng trên tăng thêm bao nhiêu centimet vuông so với ban đầu? (làm tròn kết quả đến hàng đơn vi).
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất (làm tròn kết quả đến hàng đơn vị)?
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi \(P\left( t \right)\) là số học sinh bị nhiễm virus cúm ở ngày thứ \(t\) tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virut cúm theo hệ số tỉ lệ là hằng số \(k\ne 0\). Số học sinh bị nhiễm virus cúm sau 4 ngày là 52 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Một người nông dân có 15 000 000 đồng để làm một cái hàng rào hình chữ E dọc theo con sông (như hình vẽ) để làm một khu đất có hai phần chữ nhật để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí vật liệu là 60 000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng một mét. Tìm diện tích lớn nhất của đất rào thu được.
Trong lớp học, màn hình tivi hình chữ nhật có chiều cao 1m được đặt ở độ cao \(1,2m\) so với tầm mắt của học sinh (tính từ đầu mép dưới của màn hình). Để nhìn rõ nhất phải xác định vị trí ngồi sao cho góc nhìn lớn nhất (\(\widehat{BOC}\) là góc nhìn).
Nếu xét học sinh Nam ngồi nhìn thẳng màn hình thì học sinh Nam ngồi bàn thứ mấy nhìn được rõ nhất, biết vị trí ngồi bàn đầu tiên cách tivi \(1,2m\) và mỗi bàn kế tiếp nhau cách nhau \(0,4m\) (giả sử khoảng cách các bàn như nhau).
Nhà máy A chuyên sản xuất một loại sản phẩm cho nhà máy Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 tấn sản phẩm). Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi tấn sản phẩm). Nhà máy A bán cho B bao nhiêu tấn sản phẩm để lợi nhuận thu được là lớn nhất? (làm tròn kết quả đến hàng phần mười).
Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Một sợi dây kim loại dài \(60cm\) được cắt thành hai đoạn. Đoạn dây thứ nhất uốn thành hình vuông cạnh \(a\), đoạn dây thứ hai uốn thành đường tròn bán kính \(r\)
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều \(S.ABCD\) cạnh bên bằng \(200\operatorname{m}\), góc \(\widehat{ASB}=15{}^\circ \) bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp \(AEFGHIJKLS\). Trong đó điểm \(L\) cố định và \(LS=40\operatorname{m}\). Hỏi khi đó cần dùng ít nhất bao nhiêu mét dây đèn led để trang trí? (làm tròn đến hàng đơn vị)
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất \(x\) sản phẩm \(\left( 1\le x\le 500 \right)\) thì doanh thu nhận được khi bán hết số sân phẳm đó là: \(F\left( x \right)={{x}^{3}}-1999{{x}^{2}}+1001000x+250000\) (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là: \(G\left( x \right)=x+1000+\frac{250000}{x}\) (đồng).
Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Theo thống kê tại một nhà máy \(Z\) nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 tổ công nhân đi làm và mỗi tổ công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 tổ công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 tổ/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là \(P\left( x \right)=\frac{95{{x}^{2}}+120x}{4}\) với \(x\) là thời gian làm việc trong một tuần. Nhà máy cần áp dụng thời gian làm việc mỗi tuần mấy giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất?