Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều \(S.ABCD\) cạnh bên bằng \(200\operatorname{m}\), góc \(\widehat{ASB}=15{}^\circ \) bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp \(AEFGHIJKLS\). Trong đó điểm \(L\) cố định và \(LS=40\operatorname{m}\). Hỏi khi đó cần dùng ít nhất bao nhiêu mét dây đèn led để trang trí? (làm tròn đến hàng đơn vị)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Ta sử dụng phương pháp trải đa diện
Cắt hình chóp theo cạnh bên \(SA\) rồi trải ra mặt phẳng hai lần, ta có hình vẽ sau
Từ đó suy ra chiều dài dây đèn led ngắn nhất là bằng \(AL+LS\).
Từ giả thiết về hình chóp đều \(S.ABCD\) ta có \(\widehat{ASL}=120{}^\circ \).
Ta có:
\(\begin{array}{*{35}{l}} A{{L}^{2}} & =S{{A}^{2}}+S{{L}^{2}}-2SA.SL.\cos \widehat{ASL} \\ {} & ={{200}^{2}}+{{40}^{2}}-2.200.40.\cos {{120}^{{}^\circ }}=49600. \\\end{array}\)
Nên \(AL=\sqrt{49600}=40\sqrt{31}\).
Vậy, chiều dài dây đèn led cần ít nhất là \(40\sqrt{31}+40\approx 262\) mét.
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 05 được biên soạn để giúp học sinh ôn tập toàn diện và làm quen với định dạng đề thi tốt nghiệp THPT Quốc gia. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình Toán THPT, trong đó chủ yếu là kiến thức lớp 12 (75-85%) và một phần được chọn lọc từ lớp 10, 11, giúp học sinh củng cố và liên kết các kiến thức toán học qua các năm học. Các chuyên đề quan trọng như hàm số, đạo hàm, tích phân, phương trình bậc hai, hình học không gian, tổ hợp - xác suất, số phức, và phương pháp tọa độ đều được đưa vào trong đề thi. Cấu trúc đề thi gồm ba phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, giúp học sinh tiếp cận đa dạng các dạng bài tập từ cơ bản đến nâng cao. Đây là tài liệu ôn luyện hữu ích, giúp học sinh phát triển tư duy toán học và chuẩn bị vững vàng cho kỳ thi tốt nghiệp THPT 2025.
Câu hỏi liên quan
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất \(8000\) quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất \(30\) quả bóng trong một giờ. Chi phí thiết lập các máy này là \(200\) nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là \(192\) nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một người nông dân có 15 000 000 đồng để làm một cái hàng rào hình chữ E dọc theo con sông (như hình vẽ) để làm một khu đất có hai phần chữ nhật để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí vật liệu là 60 000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng một mét. Tìm diện tích lớn nhất của đất rào thu được.
Một vật đang chuyển động đều với vận tốc \(v_0\) (m/s) thì bắt đầu tăng tốc với gia tốc \(a(t) = v_0t+t^2\) (m/s\(^2\)), trong đó \(t\) là khoảng thời gian được tính bằng giây kể từ thời điểm vật bắt đầu tăng tốc. Biết quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là 100 m. Tính vận tốc ban đầu \(v_0\) (m/s) của vật (làm tròn đến hàng phần mười).
Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi \(P\left( t \right)\) là số học sinh bị nhiễm virus cúm ở ngày thứ \(t\) tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virut cúm theo hệ số tỉ lệ là hằng số \(k\ne 0\). Số học sinh bị nhiễm virus cúm sau 4 ngày là 52 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Một thanh dầm hình hộp chữ nhật được cắt từ một khúc gỗ hình trụ có bán kính \(20\) cm sao cho thanh dầm có diện tích mặt cắt ngang lớn nhất, tức là thanh dầm có mặt cắt ngang là hình vuông. Sau khi cắt thanh dầm đó, người ta lại cắt bốn tấm ván hình hộp chữ nhật từ bốn phần còn lại của khúc gỗ (tham khảo hình vẽ dưới đây). Xác định diện tích mặt cắt ngang tối đa của mỗi tấm ván (theo đơn vị cm2 và làm tròn kết quả đến hàng phần chục).
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cho nhà máy \(B\). Hai nhà máy thỏa thuận rằng, hằng tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(X\) tấn sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để \(A\) sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Nhà máy\(A\) bán cho \(B\) bao nhiêu tấn sản phẩm để lợi nhuận thu được là lớn nhất? (làm tròn kết quả đến hàng phần mười).
Nhà máy A chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy Hai nhà máy này thoả thuận rằng, hằng tuần A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 sản phẩm). Nếu số lượng đặt hàng là \(x\) sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất \(x\) sản phẩm trong một tuần là \(C\left( x \right)=100+30x\) (triệu đồng) (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi sản phẩm). Hỏi nhà máy A bán cho nhà máy B bao nhiêu sản phẩm mỗi tuần để thu được lợi nhuận nhiều nhất? (Số sản phẩm là số nguyên dương).
Một công ty vận tải cần giao hàng đến tất cả các thành phố A, B, C, D, E (hình vẽ bên dưới). Chi phí di chuyển giữa các thành phố được mô tả trên hình. Xe giao hàng của công ty xuất phát từ một thành phố trong năm thành phố trên đi qua tất cả các thành phố còn lại đúng một lần sau đó trở lại thành phố ban đầu. Tìm chi phí thấp nhất của xe giao hàng.
Một tấm bìa cứng có kích thước \(60\text{ }\!\!~\!\!\text{ cm}\times 90\text{ }\!\!~\!\!\text{ cm}\) được gấp đôi thành một hình chữ nhật \(60\text{ }\!\!~\!\!\text{ cm}\times 45\text{ }\!\!~\!\!\text{ cm}\) như hình vẽ. Sau đó, cắt ra từ các góc của hình chữ nhật vừa gấp bốn hình vuông bằng nhau có cạnh \(x\left( \text{cm} \right)\). Tấm bìa được mở ra và sáu mép được gấp lên để tạo thành một hộp chữ nhật \(\left( \mathbf{H} \right)\) có nắp và đáy (như hình vẽ). Thể tích lớn nhất của khối \(\left( \mathbf{H} \right)\) bằng bao nhiêu lít? (làm tròn kết quả đến hàng phần mười).
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếMột cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi \(x\) là số ti vi bán được mỗi tuần, \(p\) (triệu đồng) là giá bán của mỗi ti vi. Khi đó \(p=p\left( x \right)\) được gọi là hàm cầu.
Một ông chủ nhà muốn làm một cái thang cứu hộ khi có nguy hiểm xảy ra. Ông ta muốn làm cái thang để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà. Với hàng rào cao 2,4 mét được đặt song song và cách bức tường của ngôi nhà một khoảng bằng 1,5 mét. Chiều dài ngắn nhất của cây thang bao nhiêu mét để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà (tham khảo hình vẽ) (làm tròn đến chữ số thập phân thứ 2)?
Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Một căn nhà bỏ hoang có dạng hình lập phương cạnh bằng 5m có 3 chú nhện sinh sống. Mùa đông đến, vì đói rét nên chúng đành quyết định hợp tác với nhau giăng lưới để bắt mồi. Ba chú nhện tính toán sẽ giăng một mảnh lưới hình tam giác theo cách sau: Mỗi chú nhện sẽ đứng ở mép tường bất kỳ ( có thể mép giữa 2 bức tường,giữa tường với trần nhà, hoặc giữa tường với với nền), rồi phóng những sợi tơ làm khung đến vị trí của 2 con nhện còn lại rồi sau đó mới phóng tơ dính đan phần lưới bên trong. Chúng quy định không có bất kỳ 2 con nhện nào nằm cùng trên một mặt tường, nền hoặc trần nhà. Chu vi nhỏ nhất của mảnh lưới ấy (các sợi tơ khung căn và không chùm) là \(\frac{m\sqrt{n}}{p}\) (với \(m,n,p\in {{\mathbb{N}}^{*}}\)) và \(\frac{m}{p}\) là phân số tối giản. Tính giá trị của biểu thức \(m+n+p\) ?
Trong âm nhạc, khoảng cách giữa hai nốt nhạc trong một quãng được tính bằng cung và nửa cung (nc). Mỗi quãng tám được chia thành 12 nc. Hai nốt nhạc cách nhau nc thì hai âm (cao, thấp) tương ứng với hai nốt nhạc này có tần số thỏa mãn \(f_{c}^{12}=2f_{t}^{12}\). Tập hợp tất cả các âm trong một quãng tám gọi là một gam (âm giai). Xét một gam với khoảng cách từ nốt Đồ đến các nốt tiếp theo Rê, Mi, Fa, Sol, La, Si, Đô tương ứng là 2 nc, 4 nc, 5 nc, 7 nc, 9 nc, 11 nc, 12 nc. Trong gam này, nếu âm ứng với nốt La có tần số 440 Hz thì âm ứng với nốt Sol có tần số là bao nhiêu (làm tròn đến hàng đơn vị)?
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất \(x\) sản phẩm \(\left( 1\le x\le 500 \right)\) thì doanh thu nhận được khi bán hết số sân phẳm đó là: \(F\left( x \right)={{x}^{3}}-1999{{x}^{2}}+1001000x+250000\) (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là: \(G\left( x \right)=x+1000+\frac{250000}{x}\) (đồng).
Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng \(3\,\,\text{km}\) (như hình vẽ).
Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\) và \(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền \(6\,\,\text{km/}\,\text{h}\), chạy \(8\,\,\text{km/}\,\text{h}\) và quãng đường \(BC=8\,\,\text{km}\). Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Gọi \(x\,\,\left( \text{km} \right)\) là độ dài quãng đường \(BD\). Xét tính đúng sai trong các khẳng định sau:
Trong hình bên cho biết một hình trụ bán kính đáy \(r\left( cm \right)\), chiều cao \(h\left( cm \right)\) nội tiếp hình nón có bán kính đáy \(9\,cm\), chiều cao \(18\,cm\). Tìm giá trị của \(r\) để thể tích của hình trụ là lớn nhất. (kết quả làm tròn đến hàng đơn vị của \(cm\))
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Một cái cổng hình parabol như hình bên. Chiều cao \({GH=4}\) m, chiều rộng \({AB=4}\) m, \({AC=BD=0{,}9}\) m. Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \({CDEF}\) tô đậm với giá \({1\,200\,000}\) đồng/m\({^2}\), phần còn lại làm khung hoa sắt với giá \({900\,000}\) đồng/\({{m}^{2}}\).
Giả sử cường độ ánh sáng của một nguồn điểm tỉ lệ thuận với cường độ của nguồn sáng đó và tỉ lệ nghịch với bình phương khoảng cách từ điểm đó đến nguồn sáng. Hai nguồn điểm có cường độ lần lượt là \(S\) và \(8S\), cách nhau 90 cm. Xét một điểm \(M\) nằm trên đoạn thẳng nối hai nguồn, cường độ ánh sáng tại điểm đó nhỏ nhất thì điểm đó cách nguồn có cường độ \(S\) bằng bao nhiêu centimet? (cho biết cường độ sáng tại điểm \(M\) bằng tổng cường độ sáng mỗi nguồn tại điểm đó).