Trong hình bên cho biết một hình trụ bán kính đáy \(r\left( cm \right)\), chiều cao \(h\left( cm \right)\) nội tiếp hình nón có bán kính đáy \(9\,cm\), chiều cao \(18\,cm\). Tìm giá trị của \(r\) để thể tích của hình trụ là lớn nhất. (kết quả làm tròn đến hàng đơn vị của \(cm\))
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Ta có \(\frac{r}{9}=\frac{18-h}{18}\Rightarrow h=18-2r\,\left( 0<r<9 \right)\).
Thể tích của hình trụ:
\(V=\pi {{r}^{2}}h=\pi {{r}^{2}}\left( 18-2r \right)=2\pi \left( 9{{r}^{2}}-{{r}^{3}} \right)\).
\({V}'=2\pi \left( 18r-3{{r}^{2}} \right)=6\pi \left( 6r-{{r}^{2}} \right)\); \({V}'=0\Leftrightarrow r=0\) hoặc \(r=6\).
Bảng biến thiên:
Từ đó, \(V\) đạt giá trị lớn nhất khi \(r=6\,cm\).
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 05 được biên soạn để giúp học sinh ôn tập toàn diện và làm quen với định dạng đề thi tốt nghiệp THPT Quốc gia. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình Toán THPT, trong đó chủ yếu là kiến thức lớp 12 (75-85%) và một phần được chọn lọc từ lớp 10, 11, giúp học sinh củng cố và liên kết các kiến thức toán học qua các năm học. Các chuyên đề quan trọng như hàm số, đạo hàm, tích phân, phương trình bậc hai, hình học không gian, tổ hợp - xác suất, số phức, và phương pháp tọa độ đều được đưa vào trong đề thi. Cấu trúc đề thi gồm ba phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, giúp học sinh tiếp cận đa dạng các dạng bài tập từ cơ bản đến nâng cao. Đây là tài liệu ôn luyện hữu ích, giúp học sinh phát triển tư duy toán học và chuẩn bị vững vàng cho kỳ thi tốt nghiệp THPT 2025.
Câu hỏi liên quan
Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách 300 km để tới nơi sinh sản. Vận tốc dòng nước là \(6\text{ }\!\!~\!\!\text{ km}/\text{h}\). Giả sử vận tốc hơi của cả khi mước đứng yên là \(v\text{ }\!\!~\!\!\text{ km}/\text{h}\) thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right)=c{{v}^{3}}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tính vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếMột cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi \(x\) là số ti vi bán được mỗi tuần, \(p\) (triệu đồng) là giá bán của mỗi ti vi. Khi đó \(p=p\left( x \right)\) được gọi là hàm cầu.
Một bể cá đầy nước có dạng hình hộp chữ nhật \(ABCD.EFGH\) với \(AB=6\left( dm \right)\), \(AD=8\left( dm \right)\) và cạnh bên bằng \(10\left( dm \right)\). Một chú cá con bơi theo những đoạn thẳng từ điểm \(G\) đến chạm mặt đáy của hồ, rồi từ điểm đó bơi đến vị trí điểm \(M\) là trung điểm của \(AF\) được mô hình hóa như hình vẽ sau:
Để đường đi ngắn nhất thì chú cá bơi đến điểm dưới đáy hồ cách \(BA\) và \(BC\) những đoạn bằng \(a\) và \(b\). Khi đó tổng \(D=3a+6b\) bằng bao nhiêu?
Một tấm bìa cứng có kích thước \(60\text{ }\!\!~\!\!\text{ cm}\times 90\text{ }\!\!~\!\!\text{ cm}\) được gấp đôi thành một hình chữ nhật \(60\text{ }\!\!~\!\!\text{ cm}\times 45\text{ }\!\!~\!\!\text{ cm}\) như hình vẽ. Sau đó, cắt ra từ các góc của hình chữ nhật vừa gấp bốn hình vuông bằng nhau có cạnh \(x\left( \text{cm} \right)\). Tấm bìa được mở ra và sáu mép được gấp lên để tạo thành một hộp chữ nhật \(\left( \mathbf{H} \right)\) có nắp và đáy (như hình vẽ). Thể tích lớn nhất của khối \(\left( \mathbf{H} \right)\) bằng bao nhiêu lít? (làm tròn kết quả đến hàng phần mười).
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức \(G(x)=0,024x2(30-x)\), trong đó \(x\) là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp ( \(x\) được tính bằng mg). Tìm lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều \(S.ABCD\) cạnh bên bằng \(200\operatorname{m}\), góc \(\widehat{ASB}=15{}^\circ \) bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp \(AEFGHIJKLS\). Trong đó điểm \(L\) cố định và \(LS=40\operatorname{m}\). Hỏi khi đó cần dùng ít nhất bao nhiêu mét dây đèn led để trang trí? (làm tròn đến hàng đơn vị)
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất \(8000\) quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất \(30\) quả bóng trong một giờ. Chi phí thiết lập các máy này là \(200\) nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là \(192\) nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất (làm tròn kết quả đến hàng đơn vị)?
Ông Toàn có một mảnh đất phẳng hình elip có độ dài trục lớn bằng \({16}\) m và độ dài trục nhỏ là \({10}\) m. Ông để một dải đất rộng \({8}\) m làm sân, lối đi và dải đất này nhận trục bé của elip làm trục đối xứng đồng thời ông muốn trồnghoa hai bên mảnh đất còn lại. Biết kinh phí để trồng hoa là \({100\,000}\) đồng/m\({^2}\). Hỏi ông Toàn cần bao nhiêu triệu đồng trồng hoa trên phần đất đó (kết quả được làm tròn đến hàng trăm)?
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất \(x\) sản phẩm \(\left( 1\le x\le 500 \right)\) thì doanh thu nhận được khi bán hết số sân phẳm đó là: \(F\left( x \right)={{x}^{3}}-1999{{x}^{2}}+1001000x+250000\) (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là: \(G\left( x \right)=x+1000+\frac{250000}{x}\) (đồng).
Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Một ông chủ nhà muốn làm một cái thang cứu hộ khi có nguy hiểm xảy ra. Ông ta muốn làm cái thang để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà. Với hàng rào cao 2,4 mét được đặt song song và cách bức tường của ngôi nhà một khoảng bằng 1,5 mét. Chiều dài ngắn nhất của cây thang bao nhiêu mét để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà (tham khảo hình vẽ) (làm tròn đến chữ số thập phân thứ 2)?
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi \(P\left( t \right)\) là số học sinh bị nhiễm virus cúm ở ngày thứ \(t\) tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virut cúm theo hệ số tỉ lệ là hằng số \(k\ne 0\). Số học sinh bị nhiễm virus cúm sau 4 ngày là 52 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Trong âm nhạc, khoảng cách giữa hai nốt nhạc trong một quãng được tính bằng cung và nửa cung (nc). Mỗi quãng tám được chia thành 12 nc. Hai nốt nhạc cách nhau nc thì hai âm (cao, thấp) tương ứng với hai nốt nhạc này có tần số thỏa mãn \(f_{c}^{12}=2f_{t}^{12}\). Tập hợp tất cả các âm trong một quãng tám gọi là một gam (âm giai). Xét một gam với khoảng cách từ nốt Đồ đến các nốt tiếp theo Rê, Mi, Fa, Sol, La, Si, Đô tương ứng là 2 nc, 4 nc, 5 nc, 7 nc, 9 nc, 11 nc, 12 nc. Trong gam này, nếu âm ứng với nốt La có tần số 440 Hz thì âm ứng với nốt Sol có tần số là bao nhiêu (làm tròn đến hàng đơn vị)?
Một sợi dây kim loại dài \(60cm\) được cắt thành hai đoạn. Đoạn dây thứ nhất uốn thành hình vuông cạnh \(a\), đoạn dây thứ hai uốn thành đường tròn bán kính \(r\)
Một nhà địa chất học đang ở tại điểm \(A\) trên sa mạc. Anh ta muốn đến điểm \(B\) và cách \(A\) một đoạn là 70 km. Trong sa mạc thì xe anh ta chỉ có thể di chuyển với vận tốc là \(30\text{km}/\text{h}\). Nhà địa chất phải đến được điểm \(B\) sau 2 giờ. Vì vậy, nếu anh ta đi từ \(A\) đến \(B\) sẽ không thể đến đúng giờ được. May mắn thay, có một con đường nhựa song song với đường nối \(A\) và \(B\) và cách AB một đoạn 10 km. Trên đường nhựa đó thì xe nhà địa chất này có thể di chuyển với vận tốc \(50\text{km}/\text{h}\). Thời gian ngắn nhật đề nhà địa chất di chuyển từ \(A\) đến \(B\) là bao nhiêu phút?
Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo kết quả kinh doanh của mình, ông ta xác định được rằng: nếu giá vé vào cửa là 20 (nghìn đồng) /người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 (nghìn đồng) /người thì sẽ mất 100 khách hàng hoặc giảm đi 1 (nghìn đồng) /người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 (nghìn đồng) lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để thu nhập là lớn nhất.
Một người đưa thư xuất phát từ bưu điện ở vị trí A, các điểm cần phát thư nằm dọc các con dường cần đi quBiết rằng người này phải đi trên mỗi con đường ít nhất một lần (để phát được thư cho tất cả các điểm cần phát nằm dọc theo con đường đó) và cuối cùng quay lại điểm xuất phát. Độ dài các con đường như hình vẽ (đơn vị độ dài). Hỏi tổng quãng đường người đưa thư có thể đi ngắn nhất có thể là bao nhiêu?
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + HF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB)? (kết quả làm tròn đến hàng đơn vị).
Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).