Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Thể tích nhà kho là \(10000\,{{m}^{3}}\) nên ta có:
\(V={{x}^{2}}.y=10000\Leftrightarrow y=\frac{10000}{{{x}^{2}}}\)
Diện tích sàn cần thi công là: \({{x}^{2}}\)
Diện tích mái cần thi công là: \({{x}^{2}}\)
Diện tích vách cần thi công là: \(3xy=3x.\frac{10000}{{{x}^{2}}}=\frac{30000}{x}\)
Tổng chi phí thi công là:
\(C(x)=5{{x}^{2}}+10{{x}^{2}}+8.\frac{30000}{x}=15{{x}^{2}}+\frac{240000}{x}\)
\(C'(x)=30x-\frac{240000}{{{x}^{2}}}\)
Bảng biến thiên:
Tổng chi phí thi công nhà kho là thấp nhất khi x = 20.
diện tích sàn nhà kho bằng \(400\,{{m}^{2}}\)
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 02 được biên soạn nhằm hỗ trợ học sinh ôn luyện hiệu quả, làm quen với cấu trúc đề thi chính thức và nâng cao kỹ năng giải toán. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình THPT, với 70-80% nội dung thuộc lớp 12, phần còn lại được chọn lọc từ chương trình lớp 11 và lớp 10, đảm bảo sự kết nối kiến thức giữa các lớp học. Các chuyên đề trọng tâm như hàm số, đạo hàm, số phức, hình học không gian, tổ hợp - xác suất và phương pháp tọa độ trong mặt phẳng đều được tích hợp đầy đủ trong đề thi. Cấu trúc đề thi gồm 3 phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, tạo cơ hội để học sinh tiếp cận và giải quyết các bài toán từ cơ bản đến nâng cao. Đây là tài liệu ôn tập quan trọng giúp học sinh xây dựng nền tảng vững chắc, rèn luyện tư duy toán học và đạt kết quả cao trong kỳ thi tốt nghiệp THPT 2025.
Câu hỏi liên quan
Một bể cá đầy nước có dạng hình hộp chữ nhật \(ABCD.EFGH\) với \(AB=6\left( dm \right)\), \(AD=8\left( dm \right)\) và cạnh bên bằng \(10\left( dm \right)\). Một chú cá con bơi theo những đoạn thẳng từ điểm \(G\) đến chạm mặt đáy của hồ, rồi từ điểm đó bơi đến vị trí điểm \(M\) là trung điểm của \(AF\) được mô hình hóa như hình vẽ sau:
Để đường đi ngắn nhất thì chú cá bơi đến điểm dưới đáy hồ cách \(BA\) và \(BC\) những đoạn bằng \(a\) và \(b\). Khi đó tổng \(D=3a+6b\) bằng bao nhiêu?
Một người đưa thư xuất phát từ bưu điện ở vị trí A, các điểm cần phát thư nằm dọc các con dường cần đi quBiết rằng người này phải đi trên mỗi con đường ít nhất một lần (để phát được thư cho tất cả các điểm cần phát nằm dọc theo con đường đó) và cuối cùng quay lại điểm xuất phát. Độ dài các con đường như hình vẽ (đơn vị độ dài). Hỏi tổng quãng đường người đưa thư có thể đi ngắn nhất có thể là bao nhiêu?
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cho nhà máy \(B\). Hai nhà máy thỏa thuận rằng, hằng tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(X\) tấn sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để \(A\) sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Nhà máy\(A\) bán cho \(B\) bao nhiêu tấn sản phẩm để lợi nhuận thu được là lớn nhất? (làm tròn kết quả đến hàng phần mười).
Một căn nhà bỏ hoang có dạng hình lập phương cạnh bằng 5m có 3 chú nhện sinh sống. Mùa đông đến, vì đói rét nên chúng đành quyết định hợp tác với nhau giăng lưới để bắt mồi. Ba chú nhện tính toán sẽ giăng một mảnh lưới hình tam giác theo cách sau: Mỗi chú nhện sẽ đứng ở mép tường bất kỳ ( có thể mép giữa 2 bức tường,giữa tường với trần nhà, hoặc giữa tường với với nền), rồi phóng những sợi tơ làm khung đến vị trí của 2 con nhện còn lại rồi sau đó mới phóng tơ dính đan phần lưới bên trong. Chúng quy định không có bất kỳ 2 con nhện nào nằm cùng trên một mặt tường, nền hoặc trần nhà. Chu vi nhỏ nhất của mảnh lưới ấy (các sợi tơ khung căn và không chùm) là \(\frac{m\sqrt{n}}{p}\) (với \(m,n,p\in {{\mathbb{N}}^{*}}\)) và \(\frac{m}{p}\) là phân số tối giản. Tính giá trị của biểu thức \(m+n+p\) ?
Một thanh dầm hình hộp chữ nhật được cắt từ một khúc gỗ hình trụ có bán kính \(20\) cm sao cho thanh dầm có diện tích mặt cắt ngang lớn nhất, tức là thanh dầm có mặt cắt ngang là hình vuông. Sau khi cắt thanh dầm đó, người ta lại cắt bốn tấm ván hình hộp chữ nhật từ bốn phần còn lại của khúc gỗ (tham khảo hình vẽ dưới đây). Xác định diện tích mặt cắt ngang tối đa của mỗi tấm ván (theo đơn vị cm2 và làm tròn kết quả đến hàng phần chục).
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + HF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB)? (kết quả làm tròn đến hàng đơn vị).
Một nhà máy sản xuất \(\text{ }x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí
\(C\left( x \right)=16\,000+500x-1,6{{x}^{2}}+0,004{{x}^{3}}\) (nghìn đồng).
Biết giá bán của của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right)=1700-7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ được tiêu thụ hết.
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều \(S.ABCD\) cạnh bên bằng \(200\operatorname{m}\), góc \(\widehat{ASB}=15{}^\circ \) bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp \(AEFGHIJKLS\). Trong đó điểm \(L\) cố định và \(LS=40\operatorname{m}\). Hỏi khi đó cần dùng ít nhất bao nhiêu mét dây đèn led để trang trí? (làm tròn đến hàng đơn vị)
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Một cái cổng hình parabol như hình bên. Chiều cao \({GH=4}\) m, chiều rộng \({AB=4}\) m, \({AC=BD=0{,}9}\) m. Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \({CDEF}\) tô đậm với giá \({1\,200\,000}\) đồng/m\({^2}\), phần còn lại làm khung hoa sắt với giá \({900\,000}\) đồng/\({{m}^{2}}\).
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất (làm tròn kết quả đến hàng đơn vị)?
Nhà máy A chuyên sản xuất một loại sản phẩm cho nhà máy Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 tấn sản phẩm). Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi tấn sản phẩm). Hỏi Nhà máy B đặt đơn hàng bao nhiêu tấn thì nhà máy A thu được lợi nhuận lớn nhất? (làm tròn kết quả đến hàng phần mười).
Giả sử 4 thành phố A, B, C, D với khoảng cách (đơn vị: km) giữa các thành phố được cho bởi bảng sau:
Hãy tính quãng đường ngắn nhất để đi qua tất cả các thành phố đúng một lần rồi quay lại thành phố xuất phát?
Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức \(G\left( x \right)=0,024{{x}^{2}}\left( 30-x \right)\), trong đó \(x\) là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trong bài này, ta xét một tình huống giả định có một học sinh sau kì nghỉ đã mang virus cúm quay trở lại khuôn viên trường học biệt lập với 1000 học sinh. Sau khi có sự tiếp xúc giữa các học sinh, virus cúm lây lan trong khuôn viên trường. Giả thiết hệ thống chống dịch chưa được khởi động và virus cúm được lây lan tự nhiên. Gọi \(P\left( t \right)\) là số học sinh bị nhiễm virus cúm ở ngày thứ \(t\) tính từ ngày học sinh mang virus cúm quay trở lại khuôn viên trường. Biết rằng tốc độ lây lan của virus cúm tỉ lệ thuận với số học sinh không bị nhiễm virut cúm theo hệ số tỉ lệ là hằng số \(k\ne 0\). Số học sinh bị nhiễm virus cúm sau 4 ngày là 52 học sinh. Xác định số học sinh bị nhiễm virus cúm sau 10 ngày.
Một ông chủ nhà muốn làm một cái thang cứu hộ khi có nguy hiểm xảy ra. Ông ta muốn làm cái thang để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà. Với hàng rào cao 2,4 mét được đặt song song và cách bức tường của ngôi nhà một khoảng bằng 1,5 mét. Chiều dài ngắn nhất của cây thang bao nhiêu mét để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà (tham khảo hình vẽ) (làm tròn đến chữ số thập phân thứ 2)?
Theo Định luật Hooke, lực cần dùng để kéo giãn lò xo thêm \(x\) mét từ độ dài tự nhiên là \(f\left( x \right)=k.x\left( N \right)\) với \(k\left( N/m \right)\) là độ cứng của lò xo. Một lực \(50N\) được dùng để kéo giãn lò xo từ \(10cm\)đến độ dài \(15cm\). Hỏi cần thực hiện một công là bao nhiêu để kéo giãn lò xo từ \(15cm\) đến \(20cm\)?
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất \(x\) sản phẩm \(\left( 1\le x\le 500 \right)\) thì doanh thu nhận được khi bán hết số sân phẳm đó là: \(F\left( x \right)={{x}^{3}}-1999{{x}^{2}}+1001000x+250000\) (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là: \(G\left( x \right)=x+1000+\frac{250000}{x}\) (đồng).
Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Nhằm nâng cao cơ sở vật chất cho trường, anh Hùng đang cần đặt hàng làm một chiếc bảng tương tác thông minh hình chữ nhật \(a\times b\) có chức năng cảm ứng để phục vụ cho việc dạy học, biết rằng nếu cả chiều \(b\) đều tăng thêm một nửa thì bảng sẽ có kích thước là 85 inch (quy ước \(1\text{ }inch=2,54cm\) và kích thước ấy được đo bởi đường chéo của màn hình). Tiếp đến anh Hùng muốn phủ lớp chống lóe với 7500 đồng cho mỗi mét vuông trên màn (xem như độ dày của phần phủ là không đáng kể) và 15000 đồng mỗi mét phần silicon được dán ở viền ngoài cùng của màn hình. Vậy tổng số tiền cao nhất anh Hùng có thể bỏ ra để phủ lớp chống lóe và dán silicon là bao nhiêu nghìn đồng? (làm tròn đến phần nguyên).