Theo Định luật Hooke, lực cần dùng để kéo giãn lò xo thêm \(x\) mét từ độ dài tự nhiên là \(f\left( x \right)=k.x\left( N \right)\) với \(k\left( N/m \right)\) là độ cứng của lò xo. Một lực \(50N\) được dùng để kéo giãn lò xo từ \(10cm\)đến độ dài \(15cm\). Hỏi cần thực hiện một công là bao nhiêu để kéo giãn lò xo từ \(15cm\) đến \(20cm\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Khi lò xo được kéo giãn từ độ dài từ \(10cm\) đến\(15cm\), thì lượng kéo giãn là \(x=15-10=5cm\Rightarrow x=0,05m\). Điều này có nghĩa là \(f\left( 0,05 \right)=50\Rightarrow 0,05.k=50\Rightarrow k=50:0,05=1000\left( N/m \right)\).
Do đó, ta có:
\(f\left( x \right)=1000.x\left( N \right)\) và công cần thực hiện để kéo giãn lò xo từ \(15cm\) đến \(20cm\) là
\(A=\int\limits_{0,15}^{0,2}{1000xdx=1000\cdot \frac{{{x}^{2}}}{2}}\left| \begin{align} & 0,2 \\ & 0,15 \\ \end{align} \right.=1000\cdot \left( \frac{{{0.2}^{2}}}{2}-\frac{0,{{15}^{2}}}{2} \right)=8,75\left( J \right)\).
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Một nhà máy sản xuất \(\text{ }x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí
\(C\left( x \right)=16\,000+500x-1,6{{x}^{2}}+0,004{{x}^{3}}\) (nghìn đồng).
Biết giá bán của của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right)=1700-7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ được tiêu thụ hết.
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + HF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB)? (kết quả làm tròn đến hàng đơn vị).
Ông Toàn có một mảnh đất phẳng hình elip có độ dài trục lớn bằng \({16}\) m và độ dài trục nhỏ là \({10}\) m. Ông để một dải đất rộng \({8}\) m làm sân, lối đi và dải đất này nhận trục bé của elip làm trục đối xứng đồng thời ông muốn trồnghoa hai bên mảnh đất còn lại. Biết kinh phí để trồng hoa là \({100\,000}\) đồng/m\({^2}\). Hỏi ông Toàn cần bao nhiêu triệu đồng trồng hoa trên phần đất đó (kết quả được làm tròn đến hàng trăm)?
Giả sử cường độ ánh sáng của một nguồn điểm tỉ lệ thuận với cường độ của nguồn sáng đó và tỉ lệ nghịch với bình phương khoảng cách từ điểm đó đến nguồn sáng. Hai nguồn điểm có cường độ lần lượt là \(S\) và \(8S\), cách nhau 90 cm. Xét một điểm \(M\) nằm trên đoạn thẳng nối hai nguồn, cường độ ánh sáng tại điểm đó nhỏ nhất thì điểm đó cách nguồn có cường độ \(S\) bằng bao nhiêu centimet? (cho biết cường độ sáng tại điểm \(M\) bằng tổng cường độ sáng mỗi nguồn tại điểm đó).
Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).
Nhà máy A chuyên sản xuất một loại sản phẩm cho nhà máy Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 tấn sản phẩm). Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất x tấn sản phẩm trong một tháng là \(C\left( x \right)=100+30x\) triệu đồng (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi tấn sản phẩm). Hỏi Nhà máy B đặt đơn hàng bao nhiêu tấn thì nhà máy A thu được lợi nhuận lớn nhất? (làm tròn kết quả đến hàng phần mười).
Một ông chủ nhà muốn làm một cái thang cứu hộ khi có nguy hiểm xảy ra. Ông ta muốn làm cái thang để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà. Với hàng rào cao 2,4 mét được đặt song song và cách bức tường của ngôi nhà một khoảng bằng 1,5 mét. Chiều dài ngắn nhất của cây thang bao nhiêu mét để nó đứng dưới đất vươn qua hàng rào tựa vào ngôi nhà (tham khảo hình vẽ) (làm tròn đến chữ số thập phân thứ 2)?
Độ pH của một dung dịch là đại lượng đặc trưng cho mức độ acid, base của một dung dịch. pH liên hệ trực tiếp với nồng độ \({{\text{H}}^{+}}\)thông qua biểu thức sau:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \left[ {{\text{H}}^{+}} \right] \right).\)
Trong đó: \(\left[ {{\text{H}}^{+}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \({{\text{H}}^{+}}\)có trong dung dịch cần xét.
Hơn nữa:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \frac{{{10}^{-14}}}{\left[ \text{O}{{\text{H}}^{-}} \right]} \right)\).
Trong đó: \(\left[ \text{O}{{\text{H}}^{-}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \(\text{O}{{\text{H}}^{-}}\)có trong dung dịch cần xét.
Xét thí nghiệm hóa học dưới đây:
Người ta muốn xác định độ pH của một dung dịch bằng cách trộn \(0,2\left( L \right)\) dung dịch \({{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}\) có \({{\text{n}}_{{{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}}}=0,02\text{ }\!\!~\!\!\text{ mol}\) với \(0,5\left( L \right)\) dung dịch NaOH có \({{\text{n}}_{\text{NaOH}}}=0,06\text{ }\!\!~\!\!\text{ mol}\). Tính độ pH của dung dịch tạo thành (làm tròn đến chữ số thập phân thứ nhất).
Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Theo thống kê tại một nhà máy \(Z\) nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 tổ công nhân đi làm và mỗi tổ công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 tổ công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 tổ/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là \(P\left( x \right)=\frac{95{{x}^{2}}+120x}{4}\) với \(x\) là thời gian làm việc trong một tuần. Nhà máy cần áp dụng thời gian làm việc mỗi tuần mấy giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất?
Một thanh dầm hình hộp chữ nhật được cắt từ một khúc gỗ hình trụ có bán kính \(20\) cm sao cho thanh dầm có diện tích mặt cắt ngang lớn nhất, tức là thanh dầm có mặt cắt ngang là hình vuông. Sau khi cắt thanh dầm đó, người ta lại cắt bốn tấm ván hình hộp chữ nhật từ bốn phần còn lại của khúc gỗ (tham khảo hình vẽ dưới đây). Xác định diện tích mặt cắt ngang tối đa của mỗi tấm ván (theo đơn vị cm2 và làm tròn kết quả đến hàng phần chục).
Một căn nhà bỏ hoang có dạng hình lập phương cạnh bằng 5m có 3 chú nhện sinh sống. Mùa đông đến, vì đói rét nên chúng đành quyết định hợp tác với nhau giăng lưới để bắt mồi. Ba chú nhện tính toán sẽ giăng một mảnh lưới hình tam giác theo cách sau: Mỗi chú nhện sẽ đứng ở mép tường bất kỳ ( có thể mép giữa 2 bức tường,giữa tường với trần nhà, hoặc giữa tường với với nền), rồi phóng những sợi tơ làm khung đến vị trí của 2 con nhện còn lại rồi sau đó mới phóng tơ dính đan phần lưới bên trong. Chúng quy định không có bất kỳ 2 con nhện nào nằm cùng trên một mặt tường, nền hoặc trần nhà. Chu vi nhỏ nhất của mảnh lưới ấy (các sợi tơ khung căn và không chùm) là \(\frac{m\sqrt{n}}{p}\) (với \(m,n,p\in {{\mathbb{N}}^{*}}\)) và \(\frac{m}{p}\) là phân số tối giản. Tính giá trị của biểu thức \(m+n+p\) ?
Một người đưa thư xuất phát từ bưu điện ở vị trí A, các điểm cần phát thư nằm dọc các con dường cần đi quBiết rằng người này phải đi trên mỗi con đường ít nhất một lần (để phát được thư cho tất cả các điểm cần phát nằm dọc theo con đường đó) và cuối cùng quay lại điểm xuất phát. Độ dài các con đường như hình vẽ (đơn vị độ dài). Hỏi tổng quãng đường người đưa thư có thể đi ngắn nhất có thể là bao nhiêu?
Một nhà địa chất học đang ở tại điểm \(A\) trên sa mạc. Anh ta muốn đến điểm \(B\) và cách \(A\) một đoạn là 70 km. Trong sa mạc thì xe anh ta chỉ có thể di chuyển với vận tốc là \(30\text{km}/\text{h}\). Nhà địa chất phải đến được điểm \(B\) sau 2 giờ. Vì vậy, nếu anh ta đi từ \(A\) đến \(B\) sẽ không thể đến đúng giờ được. May mắn thay, có một con đường nhựa song song với đường nối \(A\) và \(B\) và cách AB một đoạn 10 km. Trên đường nhựa đó thì xe nhà địa chất này có thể di chuyển với vận tốc \(50\text{km}/\text{h}\). Thời gian ngắn nhật đề nhà địa chất di chuyển từ \(A\) đến \(B\) là bao nhiêu phút?
Một bể cá đầy nước có dạng hình hộp chữ nhật \(ABCD.EFGH\) với \(AB=6\left( dm \right)\), \(AD=8\left( dm \right)\) và cạnh bên bằng \(10\left( dm \right)\). Một chú cá con bơi theo những đoạn thẳng từ điểm \(G\) đến chạm mặt đáy của hồ, rồi từ điểm đó bơi đến vị trí điểm \(M\) là trung điểm của \(AF\) được mô hình hóa như hình vẽ sau:
Để đường đi ngắn nhất thì chú cá bơi đến điểm dưới đáy hồ cách \(BA\) và \(BC\) những đoạn bằng \(a\) và \(b\). Khi đó tổng \(D=3a+6b\) bằng bao nhiêu?
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?
Trong hình bên cho biết một hình trụ bán kính đáy \(r\left( cm \right)\), chiều cao \(h\left( cm \right)\) nội tiếp hình nón có bán kính đáy \(9\,cm\), chiều cao \(18\,cm\). Tìm giá trị của \(r\) để thể tích của hình trụ là lớn nhất. (kết quả làm tròn đến hàng đơn vị của \(cm\))
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất \(8000\) quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất \(30\) quả bóng trong một giờ. Chi phí thiết lập các máy này là \(200\) nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là \(192\) nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một người nông dân có 15 000 000 đồng để làm một cái hàng rào hình chữ E dọc theo con sông (như hình vẽ) để làm một khu đất có hai phần chữ nhật để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí vật liệu là 60 000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng một mét. Tìm diện tích lớn nhất của đất rào thu được.
Giả sử 4 thành phố A, B, C, D với khoảng cách (đơn vị: km) giữa các thành phố được cho bởi bảng sau:
Hãy tính quãng đường ngắn nhất để đi qua tất cả các thành phố đúng một lần rồi quay lại thành phố xuất phát?