JavaScript is required

Tìm m để tích phân \(\int\limits_{AB} {(x - 3y)dx + 2ydy = 4} \) với \(AB:y = m - {x^2}\) và hai điểm \(A(1,0),B( - 1,0)\)

A.

\(1\)

B.

\( - 1\)

C.

\(2\)

D.

\( - 2\)

Trả lời:

Đáp án đúng: A


We have the curve AB given by \(y = m - x^2\). Therefore, \(dy = -2xdx\). Substituting into the integral, we get: \(\int_{AB} (x - 3y)dx + 2ydy = \int_{1}^{-1} (x - 3(m - x^2))dx + 2(m - x^2)(-2x)dx = 4\) \(\int_{1}^{-1} (x - 3m + 3x^2 - 4mx + 4x^3)dx = 4\) \(\int_{1}^{-1} (4x^3 + 3x^2 + (1-4m)x - 3m)dx = 4\) Since \(\int_{1}^{-1} 4x^3 dx = 0\) and \(\int_{1}^{-1} (1-4m)x dx = 0\) (as they are odd functions integrated over a symmetric interval), the integral becomes: \(\int_{1}^{-1} (3x^2 - 3m)dx = 4\) \([x^3 - 3mx]_{1}^{-1} = 4\) \((-1 + 3m) - (1 - 3m) = 4\) \(-2 + 6m = 4\) \(6m = 6\) \(m = 1\) Therefore, m = 1.

Câu hỏi liên quan