Tìm m để tích phân \(\int\limits_{AB} {(x - 3y)dx + 2ydy = 4} \) với \(AB:y = m - {x^2}\) và hai điểm \(A(1,0),B( - 1,0)\)
Trả lời:
Đáp án đúng: A
We have the curve AB given by \(y = m - x^2\). Therefore, \(dy = -2xdx\). Substituting into the integral, we get:
\(\int_{AB} (x - 3y)dx + 2ydy = \int_{1}^{-1} (x - 3(m - x^2))dx + 2(m - x^2)(-2x)dx = 4\)
\(\int_{1}^{-1} (x - 3m + 3x^2 - 4mx + 4x^3)dx = 4\)
\(\int_{1}^{-1} (4x^3 + 3x^2 + (1-4m)x - 3m)dx = 4\)
Since \(\int_{1}^{-1} 4x^3 dx = 0\) and \(\int_{1}^{-1} (1-4m)x dx = 0\) (as they are odd functions integrated over a symmetric interval), the integral becomes:
\(\int_{1}^{-1} (3x^2 - 3m)dx = 4\)
\([x^3 - 3mx]_{1}^{-1} = 4\)
\((-1 + 3m) - (1 - 3m) = 4\)
\(-2 + 6m = 4\)
\(6m = 6\)
\(m = 1\)
Therefore, m = 1.





