Câu hỏi:
Mệnh đề phủ định của mệnh đề “∃x ∈ ℝ, x3 – 2x + 1 < 0” là:
A. ∀x ∈ ℝ, x3 – 2x + 1 ≥ 0;
B. ∀x ∈ ℝ, x3 – 2x + 1 < 0”;
C. ∃x ∈ ℝ, x3 – 2x + 1 ≥ 0”;
D. ∀x ∈ ℝ, x3 – 2x + 1 > 0”.
Trả lời:
Đáp án đúng: A
Mệnh đề phủ định của $\exists$ là $\forall$ và mệnh đề phủ định của $< 0$ là $\geq 0$.
Vậy mệnh đề phủ định của “$\exists x \in \mathbb{R}, x^3 – 2x + 1 < 0$” là “$\forall x \in \mathbb{R}, x^3 – 2x + 1 \geq 0$”.
Vậy mệnh đề phủ định của “$\exists x \in \mathbb{R}, x^3 – 2x + 1 < 0$” là “$\forall x \in \mathbb{R}, x^3 – 2x + 1 \geq 0$”.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
18/09/2025
0 lượt thi
0 / 28
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
