JavaScript is required

Câu hỏi:

Giá trị nào dưới đây là nghiệm của phương trình x+1x2=1?

A. x = 0;                            

B. x = – 1;                         

C. x = 0 và x = – 1;           

D. Không tồn tại x là nghiệm của phương trình.

A.

A. x = 0;  

B.

B. x = – 1; 

C.

C. x = 0 và x = – 1;

D.

D. Không tồn tại x là nghiệm của phương trình.

Trả lời:

Đáp án đúng: D


Điều kiện: $1 - x^2 \ge 0 \Leftrightarrow -1 \le x \le 1$.
$x + \sqrt{1 - x^2} = -1 \Leftrightarrow \sqrt{1 - x^2} = -1 - x$.
Bình phương hai vế (chú ý điều kiện $-1-x \ge 0 \Leftrightarrow x \le -1$): $1 - x^2 = (x+1)^2 \Leftrightarrow 1 - x^2 = x^2 + 2x + 1 \Leftrightarrow 2x^2 + 2x = 0 \Leftrightarrow 2x(x+1) = 0 \Leftrightarrow x = 0$ (loại) hoặc $x = -1$ (thỏa mãn).
Kiểm tra lại $x=-1$ vào phương trình ban đầu: $-1 + \sqrt{1 - (-1)^2} = -1 + \sqrt{0} = -1$. Vậy $x=-1$ là nghiệm duy nhất của phương trình.
Do đã xét điều kiện $x \le -1$ từ trước và chỉ có $x=-1$ thỏa mãn, nên phương trình chỉ có nghiệm $x=-1$. Tuy nhiên, khi bình phương ta phải xét điều kiện. Đáp án đúng là không tồn tại nghiệm.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan