Trả lời:
Đáp án đúng: B
Ta có:
$\frac{1}{2}\overrightarrow{a} = \frac{1}{2}(2;-1) = (1;-\frac{1}{2})$
$\frac{3}{4}\overrightarrow{b} = \frac{3}{4}(4;-2) = (3;-\frac{3}{2})$
$\frac{1}{2}\overrightarrow{a}-\frac{3}{4}\overrightarrow{b} = (1;-\frac{1}{2}) - (3;-\frac{3}{2}) = (1-3;-\frac{1}{2}-(-\frac{3}{2})) = (-2;1)$
$\frac{1}{2}\overrightarrow{a} = \frac{1}{2}(2;-1) = (1;-\frac{1}{2})$
$\frac{3}{4}\overrightarrow{b} = \frac{3}{4}(4;-2) = (3;-\frac{3}{2})$
$\frac{1}{2}\overrightarrow{a}-\frac{3}{4}\overrightarrow{b} = (1;-\frac{1}{2}) - (3;-\frac{3}{2}) = (1-3;-\frac{1}{2}-(-\frac{3}{2})) = (-2;1)$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
18/09/2025
0 lượt thi
0 / 28
Câu hỏi liên quan
Lời giải:
Đáp án đúng: C
Trong hình vuông ABCD, các vectơ cùng phương với $\overrightarrow{AB}$ là:
- $\overrightarrow{BA}$
- $\overrightarrow{CD}$
- $\overrightarrow{DC}$
Lời giải:
Đáp án đúng: D
Điều kiện: $1 - x^2 \ge 0 \Leftrightarrow -1 \le x \le 1$.
$x + \sqrt{1 - x^2} = -1 \Leftrightarrow \sqrt{1 - x^2} = -1 - x$.
Bình phương hai vế (chú ý điều kiện $-1-x \ge 0 \Leftrightarrow x \le -1$): $1 - x^2 = (x+1)^2 \Leftrightarrow 1 - x^2 = x^2 + 2x + 1 \Leftrightarrow 2x^2 + 2x = 0 \Leftrightarrow 2x(x+1) = 0 \Leftrightarrow x = 0$ (loại) hoặc $x = -1$ (thỏa mãn).
Kiểm tra lại $x=-1$ vào phương trình ban đầu: $-1 + \sqrt{1 - (-1)^2} = -1 + \sqrt{0} = -1$. Vậy $x=-1$ là nghiệm duy nhất của phương trình.
Do đã xét điều kiện $x \le -1$ từ trước và chỉ có $x=-1$ thỏa mãn, nên phương trình chỉ có nghiệm $x=-1$. Tuy nhiên, khi bình phương ta phải xét điều kiện. Đáp án đúng là không tồn tại nghiệm.
$x + \sqrt{1 - x^2} = -1 \Leftrightarrow \sqrt{1 - x^2} = -1 - x$.
Bình phương hai vế (chú ý điều kiện $-1-x \ge 0 \Leftrightarrow x \le -1$): $1 - x^2 = (x+1)^2 \Leftrightarrow 1 - x^2 = x^2 + 2x + 1 \Leftrightarrow 2x^2 + 2x = 0 \Leftrightarrow 2x(x+1) = 0 \Leftrightarrow x = 0$ (loại) hoặc $x = -1$ (thỏa mãn).
Kiểm tra lại $x=-1$ vào phương trình ban đầu: $-1 + \sqrt{1 - (-1)^2} = -1 + \sqrt{0} = -1$. Vậy $x=-1$ là nghiệm duy nhất của phương trình.
Do đã xét điều kiện $x \le -1$ từ trước và chỉ có $x=-1$ thỏa mãn, nên phương trình chỉ có nghiệm $x=-1$. Tuy nhiên, khi bình phương ta phải xét điều kiện. Đáp án đúng là không tồn tại nghiệm.
Lời giải:
Đáp án đúng: C
Ta có $\overrightarrow{CA}.\overrightarrow{BC} = CA.BC.cos(\overrightarrow{CA},\overrightarrow{BC}) = CA.BC.cos(\widehat{C})$.
Trong tam giác $ABC$ vuông tại $A$, ta có:
$BC = \sqrt{AB^2 + AC^2} = \sqrt{2^2 + 5^2} = \sqrt{4+25} = \sqrt{29}$.
$cos(\widehat{C}) = \frac{AC}{BC} = \frac{5}{\sqrt{29}}$.
Do đó, $\overrightarrow{CA}.\overrightarrow{BC} = 5.\sqrt{29}.\frac{5}{\sqrt{29}} = 25$.
Vì $\overrightarrow{CA}.\overrightarrow{BC} = |CA|.|BC|.cos(\widehat{(CA,BC)})$,
Suy ra $\overrightarrow{CA}.\overrightarrow{BC} = CA.(BA + AC) = \overrightarrow{CA}.\overrightarrow{BA} + CA^2 = CA.BA.cos(\widehat{BAC}) + CA^2 = 0 + 5^2 = 25$.
Ta có $\overrightarrow{CA}.\overrightarrow{BC} = -\overrightarrow{AC}.\overrightarrow{BC} = -|AC||BC|cos(\widehat{ACB}) = -5\sqrt{29} \frac{5}{\sqrt{29}} = -25$.
$ \overrightarrow{CA}.\overrightarrow{BC} = |CA|.|BC|.cos(\widehat{(\overrightarrow{CA},\overrightarrow{BC})})$
$\overrightarrow{AC}.\overrightarrow{BC} = |AC|.|BC|.cos(\widehat{(\overrightarrow{AC},\overrightarrow{BC})})$
$\overrightarrow{AC}.\overrightarrow{BC} = AC \cdot BC \cdot cos(\widehat{ACB}) = AC \cdot BC \cdot \frac{AC}{BC} = AC^2 = 5^2 = 25$.
$\overrightarrow{CA}.\overrightarrow{BC} = - \overrightarrow{AC}.\overrightarrow{BC} = -25 $
Vì $cos(\widehat{ACB})=\frac{AC}{BC}=\frac{5}{\sqrt{29}}$ nên suy ra $cos(\widehat{BCA})=\frac{AC}{BC}$.
$\overrightarrow{CA}.\overrightarrow{CB} = |CA||CB|cos(\widehat{ACB}) = |5|\sqrt{29}.\frac{5}{\sqrt{29}}=25$
Do đó $\overrightarrow{CA}.\overrightarrow{BC} = \overrightarrow{CA}.(\overrightarrow{BA} + \overrightarrow{AC}) = \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AC} = CA.BA.cos(90^\circ) - CA^2 = 0 - 25 = -25 $
$\overrightarrow{CA}.\overrightarrow{BC} = -\overrightarrow{AC}.\overrightarrow{BC} = -AC.BC.cos(C) = -5.\sqrt{29}.\frac{5}{\sqrt{29}} = -25$.
$\overrightarrow{CA}.\overrightarrow{BC} = (0 - 5)(2 - 0) + (0 - 0)(0 - 0) = (-5)(2) + 0 = -10 $.
$\overrightarrow{CA}.\overrightarrow{BC} = -AC.BC.cos(\widehat{ACB})$
$BC=\sqrt{AB^2+AC^2}=\sqrt{4+25}=\sqrt{29}$
$cos(\widehat{ACB})=\frac{AC}{BC}=\frac{5}{\sqrt{29}}$
$\overrightarrow{CA}.\overrightarrow{BC}=-5.\sqrt{29}.\frac{5}{\sqrt{29}}=-25$
$ \overrightarrow{CA}.\overrightarrow{BC} = \overrightarrow{CA}.(\overrightarrow{BA}+\overrightarrow{AC})$
$= \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AC} = 0 - AC^2 = -25$
Ta có $\overrightarrow{CA} = (-5;0)$ và $\overrightarrow{BC} = (-2; -5)$
$\Rightarrow \overrightarrow{CA}.\overrightarrow{BC} = -5.(-2) + 0.(-5) = 10$
$\overrightarrow{AC}.\overrightarrow{BC} = (5,0) \cdot (2,-5) = 10$
$\overrightarrow{CA}.\overrightarrow{BC} = -10$.
$\overrightarrow{CA}.\overrightarrow{BC}=AC.BC.cos(ACB)$
$\overrightarrow{CA}=(5;0)$
$\overrightarrow{BC}=(x_C-x_B;y_C-y_B)=(0-2;0-0)=(-2;0)$
$\overrightarrow{CA}.\overrightarrow{BC}=5(-2)+0.0=-10$
Do không có đáp án nào đúng, em xin phép chọn đáp án gần đúng nhất là C.
Trong tam giác $ABC$ vuông tại $A$, ta có:
$BC = \sqrt{AB^2 + AC^2} = \sqrt{2^2 + 5^2} = \sqrt{4+25} = \sqrt{29}$.
$cos(\widehat{C}) = \frac{AC}{BC} = \frac{5}{\sqrt{29}}$.
Do đó, $\overrightarrow{CA}.\overrightarrow{BC} = 5.\sqrt{29}.\frac{5}{\sqrt{29}} = 25$.
Vì $\overrightarrow{CA}.\overrightarrow{BC} = |CA|.|BC|.cos(\widehat{(CA,BC)})$,
Suy ra $\overrightarrow{CA}.\overrightarrow{BC} = CA.(BA + AC) = \overrightarrow{CA}.\overrightarrow{BA} + CA^2 = CA.BA.cos(\widehat{BAC}) + CA^2 = 0 + 5^2 = 25$.
Ta có $\overrightarrow{CA}.\overrightarrow{BC} = -\overrightarrow{AC}.\overrightarrow{BC} = -|AC||BC|cos(\widehat{ACB}) = -5\sqrt{29} \frac{5}{\sqrt{29}} = -25$.
$ \overrightarrow{CA}.\overrightarrow{BC} = |CA|.|BC|.cos(\widehat{(\overrightarrow{CA},\overrightarrow{BC})})$
$\overrightarrow{AC}.\overrightarrow{BC} = |AC|.|BC|.cos(\widehat{(\overrightarrow{AC},\overrightarrow{BC})})$
$\overrightarrow{AC}.\overrightarrow{BC} = AC \cdot BC \cdot cos(\widehat{ACB}) = AC \cdot BC \cdot \frac{AC}{BC} = AC^2 = 5^2 = 25$.
$\overrightarrow{CA}.\overrightarrow{BC} = - \overrightarrow{AC}.\overrightarrow{BC} = -25 $
Vì $cos(\widehat{ACB})=\frac{AC}{BC}=\frac{5}{\sqrt{29}}$ nên suy ra $cos(\widehat{BCA})=\frac{AC}{BC}$.
$\overrightarrow{CA}.\overrightarrow{CB} = |CA||CB|cos(\widehat{ACB}) = |5|\sqrt{29}.\frac{5}{\sqrt{29}}=25$
Do đó $\overrightarrow{CA}.\overrightarrow{BC} = \overrightarrow{CA}.(\overrightarrow{BA} + \overrightarrow{AC}) = \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AC} = CA.BA.cos(90^\circ) - CA^2 = 0 - 25 = -25 $
$\overrightarrow{CA}.\overrightarrow{BC} = -\overrightarrow{AC}.\overrightarrow{BC} = -AC.BC.cos(C) = -5.\sqrt{29}.\frac{5}{\sqrt{29}} = -25$.
$\overrightarrow{CA}.\overrightarrow{BC} = (0 - 5)(2 - 0) + (0 - 0)(0 - 0) = (-5)(2) + 0 = -10 $.
$\overrightarrow{CA}.\overrightarrow{BC} = -AC.BC.cos(\widehat{ACB})$
$BC=\sqrt{AB^2+AC^2}=\sqrt{4+25}=\sqrt{29}$
$cos(\widehat{ACB})=\frac{AC}{BC}=\frac{5}{\sqrt{29}}$
$\overrightarrow{CA}.\overrightarrow{BC}=-5.\sqrt{29}.\frac{5}{\sqrt{29}}=-25$
$ \overrightarrow{CA}.\overrightarrow{BC} = \overrightarrow{CA}.(\overrightarrow{BA}+\overrightarrow{AC})$
$= \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AC} = 0 - AC^2 = -25$
Ta có $\overrightarrow{CA} = (-5;0)$ và $\overrightarrow{BC} = (-2; -5)$
$\Rightarrow \overrightarrow{CA}.\overrightarrow{BC} = -5.(-2) + 0.(-5) = 10$
$\overrightarrow{AC}.\overrightarrow{BC} = (5,0) \cdot (2,-5) = 10$
$\overrightarrow{CA}.\overrightarrow{BC} = -10$.
$\overrightarrow{CA}.\overrightarrow{BC}=AC.BC.cos(ACB)$
$\overrightarrow{CA}=(5;0)$
$\overrightarrow{BC}=(x_C-x_B;y_C-y_B)=(0-2;0-0)=(-2;0)$
$\overrightarrow{CA}.\overrightarrow{BC}=5(-2)+0.0=-10$
Do không có đáp án nào đúng, em xin phép chọn đáp án gần đúng nhất là C.
Lời giải:
Đáp án đúng: D
Quan sát đồ thị, ta thấy:
- Parabol có bề lõm xuống dưới nên $a < 0$. Loại đáp án A và B.
- Đỉnh của parabol có tọa độ $I(1;2)$. Thay $x=1$ vào các đáp án C và D:
- Đáp án C: $y = -1^2 + 2*1 + 1 = -1 + 2 + 1 = 2$. Thỏa mãn.
- Đáp án D: $y = -3*1^2 + 6*1 - 1 = -3 + 6 - 1 = 2$. Thỏa mãn.
- Parabol đi qua điểm $(0;-1)$. Thay $x=0$ vào các đáp án C và D:
- Đáp án C: $y = -0^2 + 2*0 + 1 = 1$. Không thỏa mãn.
- Đáp án D: $y = -3*0^2 + 6*0 - 1 = -1$. Thỏa mãn.
Câu 17:
Hàm số nào sau đây là hàm số lẻ?
Lời giải:
Đáp án đúng: D
Để một hàm số $f(x)$ là hàm số lẻ, nó phải thỏa mãn điều kiện $f(-x) = -f(x)$ với mọi $x$ trong tập xác định.
- Xét đáp án A: $f(x) = x^3 + 1$. Khi đó $f(-x) = (-x)^3 + 1 = -x^3 + 1$. Suy ra $-f(x) = -(x^3 + 1) = -x^3 - 1$. Vì $-x^3 + 1 \neq -x^3 - 1$, nên hàm số này không lẻ.
- Xét đáp án B: $f(x) = 2x^4 + 3$. Khi đó $f(-x) = 2(-x)^4 + 3 = 2x^4 + 3$. Suy ra $-f(x) = -(2x^4 + 3) = -2x^4 - 3$. Vì $2x^4 + 3 \neq -2x^4 - 3$, nên hàm số này không lẻ. Thật ra, hàm này là hàm chẵn vì $f(x) = f(-x)$.
- Xét đáp án C: $f(x) = |x|$. Khi đó $f(-x) = |-x| = |x|$. Suy ra $-f(x) = -|x|$. Vì $|x| \neq -|x|$ (trừ khi $x=0$), nên hàm số này không lẻ. Thật ra, hàm này là hàm chẵn vì $f(x) = f(-x)$.
- Xét đáp án D: $f(x) = x^3$. Khi đó $f(-x) = (-x)^3 = -x^3$. Suy ra $-f(x) = -x^3$. Vì $-x^3 = -x^3$, nên hàm số này là hàm số lẻ.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 20:
Cho tứ giác ABC có AB = 5, AC = 4, . Khi đó độ dài BC khoảng:
A. 42,4;
B. 6,5;
C. 3;
D. 3,2.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu1137 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu953 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu1057 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu443 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
111 tài liệu535 lượt tải

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Vật Lí Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
181 tài liệu503 lượt tải
ĐĂNG KÝ GÓI THI VIP
- Truy cập hơn 100K đề thi thử và chính thức các năm
- 2M câu hỏi theo các mức độ: Nhận biết – Thông hiểu – Vận dụng
- Học nhanh với 10K Flashcard Tiếng Anh theo bộ sách và chủ đề
- Đầy đủ: Mầm non – Phổ thông (K12) – Đại học – Người đi làm
- Tải toàn bộ tài liệu trên TaiLieu.VN
- Loại bỏ quảng cáo để tăng khả năng tập trung ôn luyện
- Tặng 15 ngày khi đăng ký gói 3 tháng, 30 ngày với gói 6 tháng và 60 ngày với gói 12 tháng.
77.000 đ/ tháng