ADMICRO
Cho \(\int\limits_{1}^{2}{\left[ 4f\left( x \right)-2x \right]dx=1.}\) Khi đó \(\int\limits_{1}^{2}{f\left( x \right)dx}\) bằng :
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(\int\limits_1^2 {\left[ {4f\left( x \right) - 2x} \right]dx} = 1 \Leftrightarrow 4\int\limits_1^2 {f\left( x \right)dx - 2\int\limits_1^2 {xdx} } = 1 \Leftrightarrow 4\int\limits_1^2 {f\left( x \right)dx - } \left. {{x^2}} \right|_1^2 = 1\)
\( \Leftrightarrow 4\int\limits_1^2 {f\left( x \right)dx = 4 \Leftrightarrow } \int\limits_1^2 {f\left( x \right)dx = 1} .\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Tất Thành lần 2
21/01/2025
312 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK