Cho \(\Delta ABC,{\mkern 1mu} \hat A = {70^\circ }\), hai đường phân giác BD và CE cắt nhau tại \(O\), thế thì?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}}\).
Vì BD và CE lần lượt là các tia phân giác của góc B và C nên ta có: \(\widehat {{B_1}} = \dfrac{{\hat B}}{2};{\mkern 1mu} \widehat {{C_1}} = \dfrac{{\hat C}}{2}\).
Trong tam giác ABC ta có: \(\hat B + \hat C = {180^\circ }{\rm{ \;}} - \hat A = {180^\circ }{\rm{ \;}} - {70^\circ }{\rm{ \;}} = {110^\circ }\).
\( \Rightarrow \widehat {BOC} = {180^\circ }{\rm{ \;}} - \widehat {{B_1}} - \widehat {{C_1}} = {180^\circ }{\rm{ \;}} - \dfrac{{\hat B + \hat C}}{2} = {180^\circ }{\rm{ \;}} - {55^\circ }{\rm{ \;}} = {125^\circ }\)
Chọn B.
Đề thi giữa HK2 môn Toán 7 CD năm 2023-2024
Trường THCS Trần Quốc Tuấn