Trong không gian Oxyz, cho tam giác đều ABC với \(A\left( 6;3;5 \right)\) và đường thẳng BC có phương trình \(\frac{x-1}{-1}=\frac{y-2}{1}=\frac{z}{2}.\) Gọi D là đường thẳng đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Điểm nào dưới đây thuộc đường thẳng D?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M\left( 1-t;2+t;2t \right)\) là hình chiếu của D lên BC.
Ta có \(\overrightarrow{AM}=\left( -5-t;t-1;2t-5 \right)\) vuông góc với \(\overrightarrow{u}=\left( -1;1;2 \right)\) là véc-tơ chỉ phương của BC.
Do đó \(-1\left( -5-t \right)+1\left( t-1 \right)+2\left( 2t-5 \right)=0\Leftrightarrow t=1.\) Suy ra \(M\left( 0;3;2 \right).\)
Vì ABC là tam giác đều nên M là trung điểm của BC. Suy ra \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AM}\Rightarrow G\left( 2;3;3 \right).\)
Đường thẳng D đi qua G, có véc-tơ chỉ phương là \(\overrightarrow{{{u}_{\Delta }}}=\frac{1}{3}\left[ \overrightarrow{AM},\overrightarrow{u} \right]=\left( 1;5;-2 \right).\)
Suy ra \(\Delta :\left\{ \begin{align} & x=2+t \\ & y=3+5t \\ & x=3-2t \\ \end{align} \right..\)
Với t=-1, ta có \(Q\left( 1;-2;5 \right)\in \Delta .\)